Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
188
result(s) for
"Shen, Yihui"
Sort by:
Stimulated Raman excited fluorescence spectroscopy and imaging
2019
Powerful optical tools have revolutionized science and technology. The prevalent fluorescence detection offers superb sensitivity down to single molecules but lacks sufficient chemical information1–3. In contrast, Raman-based vibrational spectroscopy provides exquisite chemical specificity about molecular structure, dynamics and coupling, but is notoriously insensitive3–5. Here, we report a hybrid technique of stimulated Raman excited fluorescence (SREF) that integrates superb detection sensitivity and fine chemical specificity. Through stimulated Raman pumping to an intermediate vibrational eigenstate, followed by an upconversion to an electronic fluorescent state, SREF encodes vibrational resonance into the excitation spectrum of fluorescence emission. By harnessing the narrow vibrational linewidth, we demonstrated multiplexed SREF imaging in cells, breaking the ‘colour barrier’ of fluorescence. By leveraging the superb sensitivity of SREF, we achieved all-far-field single-molecule Raman spectroscopy and imaging without plasmonic enhancement, a long-sought-after goal in photonics. Thus, through merging Raman and fluorescence spectroscopy, SREF would be a valuable tool for chemistry and biology.A hybrid technique of stimulated Raman excited fluorescence that integrates superb detection sensitivity and fine chemical specificity is demonstrated, offering all-far-field single-molecule Raman spectroscopy and imaging without plasmonic enhancement.
Journal Article
Metabolite discovery through global annotation of untargeted metabolomics data
2021
Liquid chromatography–high-resolution mass spectrometry (LC-MS)-based metabolomics aims to identify and quantify all metabolites, but most LC-MS peaks remain unidentified. Here we present a global network optimization approach, NetID, to annotate untargeted LC-MS metabolomics data. The approach aims to generate, for all experimentally observed ion peaks, annotations that match the measured masses, retention times and (when available) tandem mass spectrometry fragmentation patterns. Peaks are connected based on mass differences reflecting adduction, fragmentation, isotopes, or feasible biochemical transformations. Global optimization generates a single network linking most observed ion peaks, enhances peak assignment accuracy, and produces chemically informative peak–peak relationships, including for peaks lacking tandem mass spectrometry spectra. Applying this approach to yeast and mouse data, we identified five previously unrecognized metabolites (thiamine derivatives and N-glucosyl-taurine). Isotope tracer studies indicate active flux through these metabolites. Thus, NetID applies existing metabolomic knowledge and global optimization to substantially improve annotation coverage and accuracy in untargeted metabolomics datasets, facilitating metabolite discovery.The NetID algorithm annotates untargeted LC-MS metabolomics data by combining known biochemical and metabolomic principles with a global network optimization strategy.
Journal Article
Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy
2019
Three-dimensional visualization of tissue structures using optical microscopy facilitates the understanding of biological functions. However, optical microscopy is limited in tissue penetration due to severe light scattering. Recently, a series of tissue-clearing techniques have emerged to allow significant depth-extension for fluorescence imaging. Inspired by these advances, we develop a volumetric chemical imaging technique that couples Raman-tailored tissue-clearing with stimulated Raman scattering (SRS) microscopy. Compared with the standard SRS, the clearing-enhanced SRS achieves greater than 10-times depth increase. Based on the extracted spatial distribution of proteins and lipids, our method reveals intricate 3D organizations of tumor spheroids, mouse brain tissues, and tumor xenografts. We further develop volumetric phasor analysis of multispectral SRS images for chemically specific clustering and segmentation in 3D. Moreover, going beyond the conventional label-free paradigm, we demonstrate metabolic volumetric chemical imaging, which allows us to simultaneously map out metabolic activities of protein and lipid synthesis in glioblastoma. Together, these results support volumetric chemical imaging as a valuable tool for elucidating comprehensive 3D structures, compositions, and functions in diverse biological contexts, complementing the prevailing volumetric fluorescence microscopy.
Journal Article
Optical imaging of metabolic dynamics in animals
2018
Direct visualization of metabolic dynamics in living animals with high spatial and temporal resolution is essential to understanding many biological processes. Here we introduce a platform that combines deuterium oxide (D
2
O) probing with stimulated Raman scattering (DO-SRS) microscopy to image in situ metabolic activities. Enzymatic incorporation of D
2
O-derived deuterium into macromolecules generates carbon–deuterium (C–D) bonds, which track biosynthesis in tissues and can be imaged by SRS in situ. Within the broad vibrational spectra of C–D bonds, we discover lipid-, protein-, and DNA-specific Raman shifts and develop spectral unmixing methods to obtain C–D signals with macromolecular selectivity. DO-SRS microscopy enables us to probe de novo lipogenesis in animals, image protein biosynthesis without tissue bias, and simultaneously visualize lipid and protein metabolism and reveal their different dynamics. DO-SRS microscopy, being noninvasive, universally applicable, and cost-effective, can be adapted to a broad range of biological systems to study development, tissue homeostasis, aging, and tumor heterogeneity.
Non-destructive methods to image metabolism in situ in living tissues are limited. Here the authors combine deuterium oxide probing and stimulated Raman scattering microscopy to image lipid metabolic dynamics and protein synthesis in cells and in vivo in mice,
C. elegans
, and zebrafish.
Journal Article
Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy
2013
Synthesis of new proteins, a key step in the central dogma of molecular biology, has been a major biological process by which cells respond rapidly to environmental cues in both physiological and pathological conditions. However, the selective visualization of a newly synthesized proteome in living systems with subcellular resolution has proven to be rather challenging, despite the extensive efforts along the lines of fluorescence staining, autoradiography, and mass spectrometry. Herein, we report an imaging technique to visualize nascent proteins by harnessing the emerging stimulated Raman scattering (SRS) microscopy coupled with metabolic incorporation of deuterium-labeled amino acids. As a first demonstration, we imaged newly synthesized proteins in live mammalian cells with high spatial–temporal resolution without fixation or staining. Subcellular compartments with fast protein turnover in HeLa and HEK293T cells, and newly grown neurites in differentiating neuron-like N2A cells, are clearly identified via this imaging technique. Technically, incorporation of deuterium-labeled amino acids is minimally perturbative to live cells, whereas SRS imaging of exogenous carbon–deuterium bonds (C–D) in the cell-silent Raman region is highly sensitive, specific, and compatible with living systems. Moreover, coupled with label-free SRS imaging of the total proteome, our method can readily generate spatial maps of the quantitative ratio between new and total proteomes. Thus, this technique of nonlinear vibrational imaging of stable isotope incorporation will be a valuable tool to advance our understanding of the complex spatial and temporal dynamics of newly synthesized proteome in vivo.
Journal Article
Spectral tracing of deuterium for imaging glucose metabolism
2019
Cells and tissues often display pronounced spatial and dynamical metabolic heterogeneity. Common glucose-imaging techniques report glucose uptake or catabolism activity, yet do not trace the functional utilization of glucose-derived anabolic products. Here we report a microscopy technique for the optical imaging, via the spectral tracing of deuterium (STRIDE), of diverse macromolecules derived from glucose. Based on stimulated Raman-scattering imaging, STRIDE visualizes the metabolic dynamics of newly synthesized macromolecules, such as DNA, protein, lipids and glycogen, via the enrichment and distinct spectra of carbon–deuterium bonds transferred from the deuterated glucose precursor. STRIDE can also use spectral differences derived from different glucose isotopologues to visualize temporally separated glucose populations using a pulse–chase protocol. We also show that STRIDE can be used to image glucose metabolism in many mouse tissues, including tumours, brain, intestine and liver, at a detection limit of 10 mM of carbon–deuterium bonds. STRIDE provides a high-resolution and chemically informative assessment of glucose anabolic utilization.
The spectral tracing of deuterated glucose can be used to optically image glucose metabolism in mice.
Journal Article
Metabolic regulation of cytoskeleton functions by HDAC6-catalyzed α-tubulin lactylation
2024
Posttranslational modifications (PTMs) of tubulin, termed the “tubulin code”, play important roles in regulating microtubule functions within subcellular compartments for specialized cellular activities. While numerous tubulin PTMs have been identified, a comprehensive understanding of the complete repertoire is still underway. In this study, we report that α-tubulin lactylation is catalyzed by HDAC6 by using lactate to increase microtubule dynamics in neurons. We identify lactylation on lysine 40 of α-tubulin in the soluble tubulin dimers. Notably, lactylated α-tubulin enhances microtubule dynamics and facilitates neurite outgrowth and branching in cultured hippocampal neurons. Moreover, we discover an unexpected function of HDAC6, acting as the primary lactyltransferase to catalyze α-tubulin lactylation. HDAC6-catalyzed lactylation is a reversible process, dependent on lactate concentrations. Intracellular lactate concentration triggers HDAC6 to lactylate α-tubulin, a process dependent on its deacetylase activity. Additionally, the lactyltransferase activity may be conserved in HDAC family proteins. Our study reveals the primary role of HDAC6 in regulating α-tubulin lactylation, establishing a link between cell metabolism and cytoskeleton functions.
The mechanisms regulating protein lactylation, a post-translational modification, are not fully understood. Here, the authors discover that Histone deacetylase 6 (HDAC6) acts as the primary lactyltransferase for α-tubulin, regulating microtubule dynamics.
Journal Article
Metabolic activity induces membrane phase separation in endoplasmic reticulum
by
Shi, Lingyan
,
Chan, Robin B.
,
Shen, Yihui
in
Biological membranes
,
Biological Sciences
,
Biophysics
2017
Membrane phase behavior has been well characterized in model membranes in vitro under thermodynamic equilibrium state. However, the widely observed differences between biological membranes and their in vitro counterparts are placing more emphasis on nonequilibrium factors, including influx and efflux of lipid molecules. The endoplasmic reticulum (ER) is the largest cellular membrane system and also the most metabolically active organelle responsible for lipid synthesis. However, how the nonequilibrium metabolic activity modulates ER membrane phase has not been investigated. Here, we studied the phase behavior of functional ER in the context of lipid metabolism. Utilizing advanced vibrational imaging technique, that is, stimulated Raman scattering microscopy, we discovered that metabolism of palmitate, a prevalent saturated fatty acid (SFA), could drive solid-like domain separation from the presumably uniformly fluidic ER membrane, a previously unknown phenomenon. The potential of various fatty acids to induce solid phase can be predicted by the transition temperatures of their major metabolites. Interplay between saturated and unsaturated fatty acids is also observed. Hence, our study sheds light on cellular membrane biophysics by underscoring the nonequilibrium metabolic status of living cell.
Journal Article
An end-to-end pipeline for succinic acid production at an industrially relevant scale using Issatchenkia orientalis
2023
Microbial production of succinic acid (SA) at an industrially relevant scale has been hindered by high downstream processing costs arising from neutral pH fermentation for over three decades. Here, we metabolically engineer the acid-tolerant yeast
Issatchenkia orientalis
for SA production, attaining the highest titers in sugar-based media at low pH (pH 3) in fed-batch fermentations, i.e. 109.5 g/L in minimal medium and 104.6 g/L in sugarcane juice medium. We further perform batch fermentation using sugarcane juice medium in a pilot-scale fermenter (300×) and achieve 63.1 g/L of SA, which can be directly crystallized with a yield of 64.0%. Finally, we simulate an end-to-end low-pH SA production pipeline, and techno-economic analysis and life cycle assessment indicate our process is financially viable and can reduce greenhouse gas emissions by 34–90% relative to fossil-based production processes. We expect
I. orientalis
can serve as a general industrial platform for production of organic acids.
Microbial production of succinic acid at an industrially relevant scale has been hindered by high downstream processing costs arising from neutral pH fermentation. Here, the authors report an end-to-end pipeline for succinic acid production at low pH using engineered acid-tolerant
Issatchenkia orientalis
strain.
Journal Article
Perirenal adipose afferent nerves sustain pathological high blood pressure in rats
2022
Hypertension is a pathological condition of persistent high blood pressure (BP) of which the underlying neural mechanisms remain obscure. Here, we show that the afferent nerves in perirenal adipose tissue (PRAT) contribute to maintain pathological high BP, without affecting physiological BP. Bilateral PRAT ablation or denervation leads to a long-term reduction of high BP in spontaneous hypertensive rats (SHR), but has no effect on normal BP in control rats. Further, gain- and loss-of-function and neuron transcriptomics studies show that augmented activities and remodeling of L1-L2 dorsal root ganglia neurons are responsible for hypertension in SHR. Moreover, we went on to show that calcitonin gene-related peptide (CGRP) is a key endogenous suppressor of hypertension that is sequestered by pro-hypertensive PRAT in SHRs. Taken together, we identify PRAT afferent nerves as a pro-hypertensive node that sustains high BP via suppressing CGRP, thereby providing a therapeutic target to tackle primary hypertension.
The sympathetic nervous system can contribute to the development of hypertension, but the neurogenic mechanisms involved are incompletely understood. Here the authors report that afferent nerves in the perirenal adipose tissue (PRAT) contribute to the maintenance of high blood pressure, and PRAT ablation, denervation or upregulation of calcitonin gene-related peptide reduce blood pressure in hypertensive rats.
Journal Article