Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
329 result(s) for "Shimada, Hiroki"
Sort by:
The GR-SGK1-NDRG1 Pathway as a Predictor of Recurrence and Prognosis in Lung Adenocarcinoma After Radical Surgery
The glucocorticoids (GCs)-glucocorticoid receptor (GR)-SGK1-NDRG1 pathway plays an important role in the response of tumor cells to various stresses including chemotherapy. In many solid tumors, the GCs-GR pathway acts as a tumor suppressor; however, its function varies depending on the type of cancer. This study investigated the relationship between the GR-SGK1-NDRG1 pathway and lung adenocarcinoma recurrence and overall survival. Lung adenocarcinoma cases (n=121, Stage I-III) were included. Immunohistochemistry for GR, N-myc downstream regulated gene 1 (NDRG-1), serum and glucocorticoid-induced protein kinase 1 (SGK-1), Ki-67, and programmed cell death ligand 1 (PD-L1) was performed to examine their relationship with clinicopathological features, recurrence, and prognosis. SGK-1 and NDRG-1 were significant prognostic factors. Recurren ce was more likely in the SGK-1, NDRG-1, and Ki-67 high/positive groups. The GR-SGK1-NDRG1 pathway may be involved in the recurrence and prognosis of lung adenocarcinoma.
The usefulness of angiotensin-(1-7) and des-Arg9-bradykinin as novel biomarkers for metabolic syndrome
The renin–angiotensin system (RAS) and the kallikrein– kinin system (KKS) closely interact with each other [1, 2] (Fig. 1). In the RAS, angiotensinogen cleavage by renin generates angiotensin I, which is thereafter cleaved by angiotensin-converting enzyme (ACE) to form angiotensin II. Angiotensin II then binds to the angiotensin II type 1 (AT1) receptor, resulting in the induction of vasoconstriction, inflammation, apoptosis, hypertrophy, cell proliferation, fibrosis, and oxidative stress [3]. On the other hand, angiotensin-(1-7), which is generated by the cleavage of angiotensin II by ACE2, by the cleavage of angiotensin I by neprilysin (NEP), or by the cleavage of angiotensin-(1-9) by ACE/NEP, binds to the Mas receptor and induces vasodilatation, antiinflammation, antiremodeling, antihypertrophy, antiproliferation, antiapoptosis, and antioxidation effects [3, 4]. Recently, oral administration of angiotensin-(1-7) has been reported to prevent obesity and hepatic inflammation in rats fed a high-fat diet [5].
A rapid and nondestructive protocol for whole-mount bone staining of small fish and Xenopus
Here we propose a new protocol for whole-mount bone staining, which allows the rapid preparation of highly cleared and nondestructive specimens. It only takes 3 days to complete whole procedure for small vertebrates, such as medaka, zebrafish, and Xenopus frogs. In this procedure, we used a newly developed fixative containing formalin, Triton X-100, and potassium hydroxide, which allows the fixation, decolorization, and transparentization of specimens at the same time. A bone staining solution containing alizarin red S with ethylene glycol and a clearing solution containing Tween 20 and potassium hydroxide also contributed the specificity and swiftness of this new system. As expected, although details of the skeletal system could be observed in specimens with high transparency, it was noteworthy that high-resolution fluorescence images acquired using zoom microscopes clearly delineated the shape of each bone. This new procedure would be expected to be widely used as a standard procedure for bone staining in the testing the developmental toxicity of chemicals and in the screening test of knockout or mutant animals.
Rapid bone staining with hair removal (RAP-B/HR): a non-destructive and rapid whole-mount bone staining protocol optimized for adult hairy mice
We developed a non-destructive and rapid whole-mount bone staining method for small fish, Xenopus laevis , and rodent fetuses (RAP-B). RAP-B does not require skin or soft tissue removal. However, RAP-B requires hair removal from hairy animals, such as adult mice and rats. In the present study, we investigated hair removal chemical treatments that did not result in soft tissue destruction. The hair removal effectiveness was investigated using a calcium mercaptoacetate or sodium mercaptoacetate solution on skin fragments obtained from the back of adult mice. A mixture of 2% sodium mercaptoacetate in 3% potassium hydroxide was found to be the most effective in complete hair removal from the skin. Using this hair removal treatment as a pretreatment for RAP-B, the preparation of fast-acting artifact-free whole-mount bone staining was possible without skin and soft tissue removal (RAP-B/HR). We performed a seamless observation from a low magnification wide-view to a high magnification without artifactacting artifacts using fluorescence zoom microscopy. Therefore, the combination of RAP-B/HR and fluorescent zoom microscopy is a novel platform for three-dimensional, wide-field, high-resolution pathological anatomical analysis.
Melanocortins Contribute to Sequential Differentiation and Enucleation of Human Erythroblasts via Melanocortin Receptors 1, 2 and 5
In this study, we showed that adrenocorticotropic hormone (ACTH) promoted erythroblast differentiation and increased the enucleation ratio of erythroblasts. Because ACTH was contained in hematopoietic medium as contamination, the ratio decreased by the addition of anti-ACTH antibody (Ab). Addition of neutralizing Abs (nAbs) for melanocortin receptors (MCRs) caused erythroblast accumulation at specific stages, i.e., the addition of anti-MC2R nAb led to erythroblast accumulation at the basophilic stage (baso-E), the addition of anti-MC1R nAb caused accumulation at the polychromatic stage (poly-E), and the addition of anti-MC5R nAb caused accumulation at the orthochromatic stage (ortho-E). During erythroblast differentiation, ERK, STAT5, and AKT were consecutively phosphorylated by erythropoietin (EPO). ERK, STAT5, and AKT phosphorylation was inhibited by blocking MC2R, MC1R, and MC5R, respectively. Finally, the phosphorylation of myosin light chain 2, which is essential for the formation of contractile actomyosin rings, was inhibited by anti-MC5R nAb. Taken together, our study suggests that MC2R and MC1R signals are consecutively required for the regulation of EPO signal transduction in erythroblast differentiation, and that MC5R signal transduction is required to induce enucleation. Thus, melanocortin induces proliferation and differentiation at baso-E, and polarization and formation of an actomyosin contractile ring at ortho-E are required for enucleation.
LIF–IGF Axis Contributes to the Proliferation of Neural Progenitor Cells in Developing Rat Cerebrum
In rodent models, leukemia inhibitory factor (LIF) is involved in cerebral development via the placenta, and maternal immune activation is linked to psychiatric disorders in the child. However, whether LIF acts directly on neural progenitor cells (NPCs) remains unclear. This study performed DNA microarray analysis and quantitative RT-PCR on the fetal cerebrum after maternal intraperitoneal or fetal intracerebral ventricular injection of LIF at day 14.5 (E14.5) and determined that the expression of insulin-like growth factors (IGF)-1 and -2 was induced by LIF. Physiological IGF-1 and IGF-2 levels in fetal cerebrospinal fluid (CSF) increased from E15.5 to E17.5, following the physiological surge of LIF levels in CSF at E15.5. Immunostaining showed that IGF-1 was expressed in the cerebrum at E15.5 to E19.5 and IGF-2 at E15.5 to E17.5 and that IGF-1 receptor and insulin receptor were co-expressed in NPCs. Further, LIF treatment enhanced cultured NPC proliferation, which was reduced by picropodophyllin, an IGF-1 receptor inhibitor, even under LIF supplementation. Our findings suggest that IGF expression and release from the NPCs of the fetal cerebrum in fetal CSF is induced by LIF, thus supporting the involvement of the LIF–IGF axis in cerebral cortical development in an autocrine/paracrine manner.
Role of NeuroD1 on the negative regulation of Pomc expression by glucocorticoid
The mechanism of the negative regulation of proopiomelanocortin gene (Pomc) by glucocorticoids (Gcs) is still unclear in many points. Here, we demonstrated the involvement of neurogenic differentiation factor 1 (NeuroD1) in the Gc-mediated negative regulation of Pomc. Murine pituitary adrenocorticotropic hormone (ACTH) producing corticotroph tumor-derived AtT20 cells were treated with dexamethasone (DEX) (1-100 nM) and cultured for 24 hrs. Thereafter, Pomc mRNA expression was studied by quantitative real-time PCR and rat Pomc promoter (-703/+58) activity was examined by luciferase assay. Both Pomc mRNA expression and Pomc promoter activity were inhibited by DEX in a dose-dependent manner. Deletion and point mutant analyses of Pomc promoter suggested that the DEX-mediated transcriptional repression was mediated via E-box that exists at -376/-371 in the promoter. Since NeuroD1 is known to bind to and activate E-box of the Pomc promoter, we next examined the effect of DEX on NeuroD1 expression. Interestingly, DEX dose-dependently inhibited NeuroD1 mRNA expression, mouse NeuroD1 promoter (-2.2-kb) activity, and NeuroD1 protein expression in AtT20 cells. In addition, we confirmed the inhibitory effect of DEX on the interaction of NeuroD1 and E-box on Pomc promoter by chromatin immunoprecipitation (ChIP) assay. Finally, overexpression of mouse NeuroD1 could rescue the DEX-mediated inhibition of Pomc mRNA expression and Pomc promoter activity. Taken together, it is suggested that the suppression of NeuroD1 expression and the inhibition of NeuroD1/E-box interaction may play an important role in the Gc-mediated negative regulation of Pomc.
YM750, an ACAT Inhibitor, Acts on Adrenocortical Cells to Inhibit Aldosterone Secretion Due to Depolarization
Primary aldosteronism (PA) is considered the most common form of secondary hypertension, which is associated with excessive aldosterone secretion in the adrenal cortex. The cause of excessive aldosterone secretion is the induction of aldosterone synthase gene (CYP11B2) expression by depolarization of adrenocortical cells. In this study, we found that YM750, an Acyl-coenzyme A: cholesterol acyltransferase (ACAT) inhibitor, acts on adrenocortical cells to suppress CYP11B2 gene expression and aldosterone secretion. YM750 inhibited the induction of CYP11B2 gene expression by KCl stimulation, but not by angiotensin II and forskolin stimulation. Interestingly, YM750 did not inhibit KCl-stimulated depolarization via an increase in intracellular calcium ion concentration. Moreover, ACAT1 expression was relatively abundant in the zona glomerulosa (ZG) including these CYP11B2-positive cells. Thus, YM750 suppresses CYP11B2 gene expression by suppressing intracellular signaling activated by depolarization. In addition, ACAT1 was suggested to play an important role in steroidogenesis in the ZG. YM750 suppresses CYP11B2 gene expression and aldosterone secretion in the adrenal cortex, suggesting that it may be a potential therapeutic agent for PA.
The Suppression of Maternal–Fetal Leukemia Inhibitory Factor Signal Relay Pathway by Maternal Immune Activation Impairs Brain Development in Mice
Recent studies in rodents suggest that maternal immune activation (MIA) by viral infection is associated with schizophrenia and autism in offspring. Although maternal IL-6 is though t to be a possible mediator relating MIA induced these neuropsychiatric disorders, the mechanism remains to be elucidated. Previously, we reported that the maternal leukemia inhibitory factor (LIF)-placental ACTH-fetal LIF signaling relay pathway (maternal-fetal LIF signal relay) promotes neurogenesis of fetal cerebrum in rats. Here we report that the maternal-fetal LIF signal relay in mice is suppressed by injection of polyriboinosinic-polyribocytidylic acid into dams, which induces MIA at 12.5 days post-coitum. Maternal IL-6 levels and gene expression of placental suppressor of cytokine signaling 3 (Socs3) increased according to the severity of MIA and gene expression of placental Socs3 correlated with maternal IL-6 levels. Furthermore, we show that MIA causes reduction of LIF level in the fetal cerebrospinal fluid, resulting in the decreased neurogenesis in the cerebrum. These findings suggest that maternal IL-6 interferes the maternal-fetal LIF signal relay by inducing SOCS3 in the placenta and leads to decreased neurogenesis.