Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
5 result(s) for "Siangoli Belesi, Freddy"
Sort by:
Serological evidence of clade Ib Mpox transmission by sex workers and within household in South Kivu, DRC
Understanding secondary attack rates is a key knowledge gap in the ongoing clade Ib mpox virus (MPXV) outbreak in the Democratic Republic of the Congo. Here, we report the first cross-sectional serological study to investigate local MPXV clade Ib transmission in South Kivu, DRC. Seropositivity was defined as a detectable titer in a cell lysate-based screening ELISA and confirmation by virus neutralization test. Sera were collected in November and December 2023 ( n  = 120), and in May 2024 ( n  = 48) from professional sex workers (PSW) and visitors of 25 bars with reports of mpox cases. We detected serological evidence for MPXV infection in 18% and 17% of these sera, respectively, indicating that PSW played an important role in MPXV clade Ib transmission in this region. Additionally, sera from 108 direct contacts of mpox cases from 34 households were collected between September 2023 and May 2024. Serological evidence for MPXV infection was found in at least one serum sample in 50% of households, including in nine households with seropositive minors, providing evidence for close-contact household transmission. Serological studies are needed to comprehend the extent and severity of the ongoing MPXV outbreak, and may be used to guide targeted vaccination strategies, particularly for high-risk groups. Serological studies are needed to understand the ongoing clade Ib mpox outbreak in the Democratic Republic of the Congo and neighboring countries. Here, the authors conduct a cross-sectional serological study in South Kivu, highlighting the role of professional sex workers and household transmission in mpox epidemiology.
Shifting transmission patterns of human mpox in South Kivu, DR Congo
First reported in humans in 1970, there has since been renewed interest in the disease due to altered transmission and spread mechanisms, and the increased number of cases in 2022.1 WHO declared mpox outbreak a Public Health Emergency of International Concern (PHEIC), following rapid and sustained spread beyond the endemic countries and increases in the number of cases in clusters. Previously, there had been an indication that the transmission in DR Congo was driven by homosexual interaction.2 This commentary describes the epidemiology of the current mpox outbreak in South Kivu using routine surveillance data and highlights what appears to be altered transmission dynamics from the traditional human–wild interactions and casual human-to-human transmission, to heterosexual transmission and the likely implications for cross border and potential global spread. More than half of the cases were women (53·8%), a result that diverges from previous studies where men were predominantly affected, yet aligns with the current epidemiology of Clade I in Central Africa.3 It appears apparent that heterosexual transmission could be driving the transmission rates in this region, unlike homosexual transmission especially in MSM, which was the main driver for the high infection rates in 2022.2 High prevalence in women could complicate control by introducing another route of transmission—ie, vertical transmission, which presents with adverse pregnancy outcomes.4 Furthermore, evidence of heterosexual transmission spread is supported by the fact that currently, female sex workers constitute a big proportion of cases (29%) in this cluster (figure).
Complete Genome Sequencing, Annotation, and Mutational Profiling of the Novel Clade I Human Mpox Virus, Kamituga Strain
Introduction: Human Mpox (formerly monkeypox) infection is an emerging zoonotic disease caused by the Mpox virus (MPXV). We describe the complete genome annotation, phylogeny, and mutational profile of a novel, sustained Clade I Mpox outbreak in the city of Kamituga in Eastern Democratic Republic of the Congo (DRC). Methodology: A cross-sectional, observational, cohort study was performed among patients of all ages admitted to the Kamituga Hospital with Mpox infection symptoms between late September 2023 and late January 2024. DNA was isolated from Mpox swabbed lesions and sequenced followed by phylogenetic analysis, genome annotation, and mutational profiling. Results: We describe an ongoing Clade I Mpox outbreak in the city of Kamituga, South Kivu Province, Democratic Republic of Congo. Whole-genome sequencing of the viral RNA samples revealed, on average, 201.5 snps, 28 insertions, 81 deletions, 2 indels, 312.5 total variants, 158.3 amino acid changes, 81.66 intergenic variants, 72.16 synonymous mutations, 106 missense variants, 41.16 frameshift variants, and 3.33 inframe deletions across six samples. By assigning mutations at the proteome level for Kamituga MPXV sequences, we observed that seven proteins, namely, C9L (OPG047), I4L (OPG080), L6R (OPG105), A17L (OPG143), A25R (OPG151), A28L (OPG153), and B21R (OPG210) have emerged as hot spot mutations based on the consensuses inframe deletions, frameshift variants, synonymous variants, and amino acids substitutions. Based on the outcome of the annotation, we found a deletion of the D14L (OPG032) gene in all six samples. Following phylogenetic analysis and whole genome assembly, we determined that this cluster of Mpox infections is genetically distinct from previously reported Clade I outbreaks, and thus propose that the Kamituga Mpox outbreak represents a novel subgroup (subgroup VI) of Clade I MPXV. Conclusions: Here we report the complete viral genome for the ongoing Clade I Mpox Kamituga outbreak for the first time. This outbreak presents a distinct mutational profile from previously sequenced Clade I MPXV oubtreaks, suggesting that this cluster of infections is a novel subgroup (we term this subgroup VI). These findings underscore the need for ongoing vigilance and continued sequencing of novel Mpox threats in endemic regions.
The Trans-Kingdom Spectrum of Mpox-like Lesion Pustules of Suspect Patients in the Mpox Clade Ib Outbreak in Eastern Democratic Republic of the Congo
During infectious disease outbreaks, acquiring genetic data across various kingdoms offers essential information to tailor precise treatment methodologies and bolster clinical, epidemiological, and public health awareness. Metagenomics sequencing has paved the way for personalized treatment approaches and streamlined the monitoring process for both co-infections and opportunistic infections. In this study, we conducted long-read metagenomic DNA sequencing on mpox-like lesion pustules from six suspected patients who were positive and confirmed to be infected with MPXV during the MPXV subclade Ib outbreak in the Eastern Democratic Republic of the Congo. The sequenced data were taxonomically classified as bacterial, fungal, and viral in composition. Our results show a wide spectrum of microorganisms present in the lesions. Bacteria such as Corynebacterium amycolatum, Gardnerella vaginalis, Enterococcus faecium, Enterobacter clocae, Staphylococcus epidermidis, and Stenotrophomonas maltophilia were found in the lesions. The viral classification of the reads pointed out the absolute predominance of the monkeypox virus. Taken together, the outcomes of this investigation underscore the potential involvement of microorganisms in mpox lesions and the possible role that co-infections played in exacerbating disease severity and transmission during the MPXV subclade Ib outbreak.
Sustained human outbreak of a new MPXV clade I lineage in eastern Democratic Republic of the Congo
Outbreaks of monkeypox (mpox) have historically resulted from zoonotic spillover of clade I monkeypox virus (MPXV) in Central Africa and clade II MPXV in West Africa. In 2022, subclade IIb caused a global epidemic linked to transmission through sexual contact. Here we describe the epidemiological and genomic features of an mpox outbreak in a mining region in eastern Democratic Republic of the Congo, caused by clade I MPXV. Surveillance data collected between September 2023 and January 2024 identified 241 suspected cases. Genomic analysis demonstrates a distinct clade I lineage divergent from previously circulating strains in the Democratic Republic of the Congo. Of the 108 polymerase chain reaction-confirmed mpox cases, the median age of individuals was 22 years, 51.9% were female and 29% were sex workers, suggesting a potential role for sexual transmission. The predominance of APOBEC3-type mutations and the estimated emergence time around mid-September 2023 imply recent sustained human-to-human transmission. Genomic and epidemiologic analyses of monkeypox cases stemming from a recent outbreak in the Democratic Republic of the Congo suggest that a new clade I lineage is circulating and that its spread may be linked to sexual transmission.