Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
16 result(s) for "Sibayan, Judy"
Sort by:
Glucose levels measured with continuous glucose monitoring in uncomplicated pregnancies
IntroductionTo characterize glucose levels during uncomplicated pregnancies, defined as pregnancy with a hemoglobin A1c <5.7% (<39 mmol/mol) in early pregnancy, and without a large-for-gestational-age birth, hypertensive disorders of pregnancy, or gestational diabetes mellitus (ie, abnormal oral glucose tolerance test).Research design and methodsTwo sites enrolled 937 pregnant individuals aged 18 years and older prior to reaching 17 gestational weeks; 413 had an uncomplicated pregnancy (mean±SD body mass index (BMI) of 25.3±5.0 kg/m2) and wore Dexcom G6 continuous glucose monitoring (CGM) devices throughout the observed gestational period. Mealtimes were voluntarily recorded. Glycemic levels during gestation were characterized using CGM-measured glycemic metrics.ResultsParticipants wore CGM for a median of 123 days each. Glucose levels were nearly stable throughout all three trimesters in uncomplicated pregnancies. Overall mean±SD glucose during gestation was 98±7 mg/dL (5.4±0.4 mmol/L), median per cent time 63–120 mg/dL (3.5–6.7 mmol/L) was 86% (IQR: 82–89%), median per cent time <63 mg/dL (3.5 mmol/L) was 1.8%, median per cent time >120 mg/dL (6.7 mmol/L) was 11%, and median per cent time >140 mg/dL (7.8 mmol/L) was 2.5%. Mean post-prandial peak glucose was 126±22 mg/dL (7.0±1.2 mmol/L), and mean post-prandial glycemic excursion was 36±22 mg/dL (2.0±1.2 mmol/L). Higher mean glucose levels were low to moderately associated with pregnant individuals with higher BMIs (103±6 mg/dL (5.7±0.3 mmol/L) for BMI ≥30.0 kg/m2 vs 96±7 mg/dL (5.3±0.4 mmol/L) for BMI 18.5–<25 kg/m2, r=0.35).ConclusionsMean glucose levels and time 63–120 mg/dL (3.5–6.7 mmol/L) remained nearly stable throughout pregnancy and values above 140 mg/dL (7.8 mmol/L) were rare. Mean glucose levels in pregnancy trend higher as BMI increases into the overweight/obesity range. The glycemic metrics reported during uncomplicated pregnancies represent treatment targets for pregnant individuals.
AiDAPT: automated insulin delivery amongst pregnant women with type 1 diabetes: a multicentre randomized controlled trial – study protocol
Background Pregnant women with type 1 diabetes strive for tight glucose targets (3.5-7.8 mmol/L) to minimise the risks of obstetric and neonatal complications. Despite using diabetes technologies including continuous glucose monitoring (CGM), insulin pumps and contemporary insulin analogues, most women struggle to achieve and maintain the recommended pregnancy glucose targets. This study aims to evaluate whether the use of automated closed-loop insulin delivery improves antenatal glucose levels in pregnant women with type 1 diabetes. Methods/design A multicentre, open label, randomized, controlled trial of pregnant women with type 1 diabetes and a HbA1c of ≥48 mmol/mol (6.5%) at pregnancy confirmation and ≤ 86 mmol/mol (10%) at randomization. Participants who provide written informed consent before 13 weeks 6 days gestation will be entered into a run-in phase to collect 96 h (24 h overnight) of CGM glucose values. Eligible participants will be randomized on a 1:1 basis to CGM (Dexcom G6) with usual insulin delivery (control) or closed-loop (intervention). The closed-loop system includes a model predictive control algorithm (CamAPS FX application), hosted on an android smartphone that communicates wirelessly with the insulin pump (Dana Diabecare RS) and CGM transmitter. Research visits and device training will be provided virtually or face-to-face in conjunction with 4-weekly antenatal clinic visits where possible. Randomization will stratify for clinic site. One hundred twenty-four participants will be recruited. This takes into account 10% attrition and 10% who experience miscarriage or pregnancy loss. Analyses will be performed according to intention to treat. The primary analysis will evaluate the change in the time spent in the target glucose range (3.5-7.8 mmol/l) between the intervention and control group from 16 weeks gestation until delivery. Secondary outcomes include overnight time in target, time above target (> 7.8 mmol/l), standard CGM metrics, HbA1c and psychosocial functioning and health economic measures. Safety outcomes include the number and severity of ketoacidosis, severe hypoglycaemia and adverse device events. Discussion This will be the largest randomized controlled trial to evaluate the impact of closed-loop insulin delivery during type 1 diabetes pregnancy. Trial registration ISRCTN 56898625 Registration Date: 10 April, 2018.
Assessing the effect of closed-loop insulin delivery from onset of type 1 diabetes in youth on residual beta-cell function compared to standard insulin therapy (CLOuD study): a randomised parallel study protocol
IntroductionManagement of newly diagnosed type 1 diabetes (T1D) in children and adolescents is challenging for patients, families and healthcare professionals. The objective of this study is to determine whether continued intensive metabolic control using hybrid closed-loop (CL) insulin delivery following diagnosis of T1D can preserve C-peptide secretion, a marker of residual beta-cell function, compared with standard multiple daily injections (MDI) therapy.Methods and analysisThe study adopts an open-label, multicentre, randomised, parallel design, and aims to randomise 96 participants aged 10–16.9 years, recruited within 21 days of diagnosis with T1D. Following a baseline mixed meal tolerance test (MMTT), participants will be randomised to receive 24 months treatment with conventional MDI therapy or with CL insulin delivery. A further 24-month optional extension phase will be offered to all participants to continue with the allocated treatment. The primary outcome is the between group difference in area under the stimulated C-peptide curve (AUC) of the MMTT at 12 months post diagnosis. Analyses will be conducted on an intention-to-treat basis. Key secondary outcomes are between group differences in time spent in target glucose range (3.9–10 mmol/L), glycated haemoglobin (HbA1c) and time spent in hypoglycaemia (<3.9 mmol/L) at 12 months. Secondary efficacy outcomes include between group differences in stimulated C-peptide AUC at 24 months, time spent in target glucose range, glucose variability, hypoglycaemia and hyperglycaemia as recorded by periodically applied masked continuous glucose monitoring devices, total, basal and bolus insulin dose, and change in body weight. Cognitive, emotional and behavioural characteristics of participants and parents will be evaluated, and a cost–utility analysis performed to support adoption of CL as a standard treatment modality following diagnosis of T1D.Ethics and disseminationEthics approval has been obtained from Cambridge East Research Ethics Committee. The results will be disseminated by peer-reviewed publications and conference presentations.Trial registration numberNCT02871089; Pre-results.
Assessing the efficacy, safety and utility of closed-loop insulin delivery compared with sensor-augmented pump therapy in very young children with type 1 diabetes (KidsAP02 study): an open-label, multicentre, multinational, randomised cross-over study protocol
IntroductionDiabetes management in very young children remains challenging. Glycaemic targets are achieved at the expense of high parental diabetes management burden and frequent hypoglycaemia, impacting quality of life for the whole family. Our objective is to assess whether automated insulin delivery can improve glycaemic control and alleviate the burden of diabetes management in this particular age group.Methods and analysisThe study adopts an open-label, multinational, multicentre, randomised, crossover design and aims to randomise 72 children aged 1–7 years with type 1 diabetes on insulin pump therapy. Following screening, participants will receive training on study insulin pump and study continuous glucose monitoring devices. Participants will be randomised to 16-week use of the hybrid closed-loop system (intervention period) or to 16-week use of sensor-augmented pump therapy (control period) with 1–4 weeks washout period before crossing over to the other arm. The order of the two study periods will be random. The primary endpoint is the between-group difference in time spent in the target glucose range from 3.9 to 10.0 mmol/L based on sensor glucose readings during the 16-week study periods. Analyses will be conducted on an intention-to-treat basis. Key secondary endpoints are between group differences in time spent above and below target glucose range, glycated haemoglobin and average sensor glucose. Participants’ and caregivers’ experiences will be evaluated using questionnaires and qualitative interviews, and sleep quality will be assessed. A health economic analysis will be performed.Ethics and disseminationEthics approval has been obtained from Cambridge East Research Ethics Committee (UK), Ethics Committees of the University of Innsbruck, the University of Vienna and the University of Graz (Austria), Ethics Committee of the Medical Faculty of the University of Leipzig (Germany) and Comité National d’Ethique de Recherche (Luxembourg). The results will be disseminated by peer-reviewed publications and conference presentations.Trial registration numberNCT03784027.
Randomized Trial of Closed-Loop Control in Very Young Children with Type 1 Diabetes
In a multicenter, randomized, crossover trial involving children 1 to 7 years of age with type 1 diabetes, a closed-loop system was compared with sensor-augmented pump therapy in random order. The closed-loop system improved glycemic control in very young children with type 1 diabetes, without increasing the time spent in a hypoglycemic state.
Automated Insulin Delivery in Women with Pregnancy Complicated by Type 1 Diabetes
This trial randomly assigned pregnant women with type 1 diabetes to standard insulin therapy with continuous glucose monitoring or to hybrid closed-loop therapy. The latter significantly improved maternal glycemic control.
A comparison of two hybrid closed-loop systems in adolescents and young adults with type 1 diabetes (FLAIR): a multicentre, randomised, crossover trial
Management of type 1 diabetes is challenging. We compared outcomes using a commercially available hybrid closed-loop system versus a new investigational system with features potentially useful for adolescents and young adults with type 1 diabetes. In this multinational, randomised, crossover trial (Fuzzy Logic Automated Insulin Regulation [FLAIR]), individuals aged 14–29 years old, with a clinical diagnosis of type 1 diabetes with a duration of at least 1 year, using either an insulin pump or multiple daily insulin injections, and glycated haemoglobin (HbA1c) levels of 7·0–11·0% (53–97 mmol/mol) were recruited from seven academic-based endocrinology practices, four in the USA, and one each in Germany, Israel, and Slovenia. After a run-in period to teach participants how to use the study pump and continuous glucose monitor, participants were randomly assigned (1:1) using a computer-generated sequence, with a permuted block design (block sizes of two and four), stratified by baseline HbA1c and use of a personal MiniMed 670G system (Medtronic) at enrolment, to either use of a MiniMed 670G hybrid closed-loop system (670G) or the investigational advanced hybrid closed-loop system (Medtronic) for the first 12-week period, and then participants were crossed over with no washout period, to the other group for use for another 12 weeks. Masking was not possible due to the nature of the systems used. The coprimary outcomes, measured with continuous glucose monitoring, were proportion of time that glucose levels were above 180 mg/dL (>10·0 mmol/L) during 0600 h to 2359 h (ie, daytime), tested for superiority, and proportion of time that glucose levels were below 54 mg/dL (<3·0 mmol/L) calculated over a full 24-h period, tested for non-inferiority (non-inferiority margin 2%). Analysis was by intention to treat. Safety was assessed in all participants randomly assigned to treatment. This trial is registered with ClinicalTrials.gov, NCT03040414, and is now complete. Between June 3 and Aug 22, 2019, 113 individuals were enrolled into the trial. Mean age was 19 years (SD 4) and 70 (62%) of 113 participants were female. Mean proportion of time with daytime glucose levels above 180 mg/dL (>10·0 mmol/L) was 42% (SD 13) at baseline, 37% (9) during use of the 670G system, and 34% (9) during use of the advanced hybrid closed-loop system (mean difference [advanced hybrid closed-loop system minus 670G system] −3·00% [95% CI −3·97 to −2·04]; p<0·0001). Mean 24-h proportion of time with glucose levels below 54 mg/dL (<3·0 mmol/L) was 0·46% (SD 0·42) at baseline, 0·50% (0·35) during use of the 670G system, and 0·46% (0·33) during use of the advanced hybrid closed-loop system (mean difference [advanced hybrid closed-loop system minus 670G system] −0·06% [95% CI −0·11 to −0·02]; p<0·0001 for non-inferiority). One severe hypoglycaemic event occurred in the advanced hybrid closed-loop system group, determined to be unrelated to study treatment, and none occurred in the 670G group. Hyperglycaemia was reduced without increasing hypoglycaemia in adolescents and young adults with type 1 diabetes using the investigational advanced hybrid closed-loop system compared with the commercially available MiniMed 670G system. Testing an advanced hybrid closed-loop system in populations that are underserved due to socioeconomic factors and testing during pregnancy and in individuals with impaired awareness of hypoglycaemia would advance the effective use of this technology National Institute of Diabetes and Digestive and Kidney Diseases.
Closed-Loop Therapy and Preservation of C-Peptide Secretion in Type 1 Diabetes
In a trial involving youths with new-onset type 1 diabetes, intensive glucose control with hybrid closed-loop therapy for 24 months did not preserve C-peptide secretion as compared with standard insulin therapy.
Closed-loop insulin delivery in suboptimally controlled type 1 diabetes: a multicentre, 12-week randomised trial
The achievement of glycaemic control remains challenging for patients with type 1 diabetes. We assessed the effectiveness of day-and-night hybrid closed-loop insulin delivery compared with sensor-augmented pump therapy in people with suboptimally controlled type 1 diabetes aged 6 years and older. In this open-label, multicentre, multinational, single-period, parallel randomised controlled trial, participants were recruited from diabetes outpatient clinics at four hospitals in the UK and two centres in the USA. We randomly assigned participants with type 1 diabetes aged 6 years and older treated with insulin pump and with suboptimal glycaemic control (glycated haemoglobin [HbA1c] 7·5–10·0%) to receive either hybrid closed-loop therapy or sensor-augmented pump therapy over 12 weeks of free living. Training on study insulin pump and continuous glucose monitoring took place over a 4-week run-in period. Eligible subjects were randomly assigned using central randomisation software. Allocation to the two study groups was unblinded, and randomisation was stratified within centre by low (<8·5%) or high (≥8·5%) HbA1c. The primary endpoint was the proportion of time that glucose concentration was within the target range of 3·9–10·0 mmol/L at 12 weeks post randomisation. Analyses of primary outcome and safety measures were done in all randomised patients. The trial is registered with ClinicalTrials.gov, number NCT02523131, and is closed to accrual. From May 12, 2016, to Nov 17, 2017, 114 individuals were screened, and 86 eligible patients were randomly assigned to receive hybrid closed-loop therapy (n=46) or sensor-augmented pump therapy (n=40; control group). The proportion of time that glucose concentration was within the target range was significantly higher in the closed-loop group (65%, SD 8) compared with the control group (54%, SD 9; mean difference in change 10·8 percentage points, 95% CI 8·2 to 13·5; p<0·0001). In the closed-loop group, HbA1c was reduced from a screening value of 8·3% (SD 0·6) to 8·0% (SD 0·6) after the 4-week run-in, and to 7·4% (SD 0·6) after the 12-week intervention period. In the control group, the HbA1c values were 8·2% (SD 0·5) at screening, 7·8% (SD 0·6) after run-in, and 7·7% (SD 0·5) after intervention; reductions in HbA1c percentages were significantly greater in the closed-loop group compared with the control group (mean difference in change 0·36%, 95% CI 0·19 to 0·53; p<0·0001). The time spent with glucose concentrations below 3·9 mmol/L (mean difference in change −0·83 percentage points, −1·40 to −0·16; p=0·0013) and above 10·0 mmol/L (mean difference in change −10·3 percentage points, −13·2 to −7·5; p<0·0001) was shorter in the closed-loop group than the control group. The coefficient of variation of sensor-measured glucose was not different between interventions (mean difference in change −0·4%, 95% CI −1·4% to 0·7%; p=0·50). Similarly, total daily insulin dose was not different (mean difference in change 0·031 U/kg per day, 95% CI −0·005 to 0·067; p=0·09) and bodyweight did not differ (mean difference in change 0·68 kg, 95% CI −0·34 to 1·69; p=0·19). No severe hypoglycaemia occurred. One diabetic ketoacidosis occurred in the closed-loop group due to infusion set failure. Two participants in each study group had significant hyperglycaemia, and there were 13 other adverse events in the closed-loop group and three in the control group. Hybrid closed-loop insulin delivery improves glucose control while reducing the risk of hypoglycaemia across a wide age range in patients with suboptimally controlled type 1 diabetes. JDRF, NIHR, and Wellcome Trust.
Reduced burden of diabetes and improved quality of life: Experiences from unrestricted day‐and‐night hybrid closed‐loop use in very young children with type 1 diabetes
Objective To evaluate the experiences of families with very young children aged 1 to 7 years (inclusive) with type 1 diabetes using day‐and‐night hybrid closed‐loop insulin delivery. Methods Parents/caregivers of 20 children aged 1 to 7 years with type 1 diabetes completed a closed‐loop experience survey following two 3‐week periods of unrestricted day‐and‐night hybrid closed‐loop insulin therapy using Cambridge FlorenceM system at home. Benefits, limitations, and improvements of closed‐loop technology were explored. Results Responders reported reduced burden of diabetes management, less time spent managing diabetes, and improved quality of sleep with closed‐loop. Ninety percent of the responders felt less worried about their child's glucose control using closed‐loop. Size of study devices, battery performance and connectivity issues were identified as areas for improvement. Parents/caregivers wished for more options to input information to the system such as temporary glucose targets. Conclusions Parents/caregivers of very young children reported important quality of life benefits associated with using closed‐loop, supporting adoption of this technology in this population.