Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
21
result(s) for
"Skotte, Line"
Sort by:
Estimating Individual Admixture Proportions from Next Generation Sequencing Data
by
Albrechtsen, Anders
,
Skotte, Line
,
Korneliussen, Thorfinn Sand
in
Algorithms
,
Computer Simulation
,
Data Interpretation, Statistical
2013
Inference of population structure and individual ancestry is important both for population genetics and for association studies. With next generation sequencing technologies it is possible to obtain genetic data for all accessible genetic variations in the genome. Existing methods for admixture analysis rely on known genotypes. However, individual genotypes cannot be inferred from low-depth sequencing data without introducing errors. This article presents a new method for inferring an individual’s ancestry that takes the uncertainty introduced in next generation sequencing data into account. This is achieved by working directly with genotype likelihoods that contain all relevant information of the unobserved genotypes. Using simulations as well as publicly available sequencing data, we demonstrate that the presented method has great accuracy even for very low-depth data. At the same time, we demonstrate that applying existing methods to genotypes called from the same data can introduce severe biases. The presented method is implemented in the NGSadmix software available at http://www.popgen.dk/software.
Journal Article
Noninvasive blood tests for fetal development predict gestational age and preterm delivery
by
Okamoto, Jennifer
,
Liu, Keli
,
Biggio, Joseph R.
in
Adult
,
Blood
,
Blood Chemical Analysis - methods
2018
Low-cost methods for monitoring fetal development could improve prenatal care, especially in low-resource settings. By measuring the levels of certain placental RNA transcripts in maternal blood, Ngo
et al.
developed two noninvasive blood tests that provide a window into the progression of individual pregnancies. In a small proof-of-concept study, the first blood test predicted fetal age and delivery date with an accuracy comparable to that of ultrasound. The second blood test, also examined in a small pilot study, discriminated women at risk of preterm delivery from those who delivered at full term. The next step will be to assess the reliability of the tests in large, blinded clinical trials.
Science
, this issue p.
1133
In pilot studies of pregnant women, RNA-based tests of maternal blood predicted delivery date and risk of early childbirth.
Noninvasive blood tests that provide information about fetal development and gestational age could potentially improve prenatal care. Ultrasound, the current gold standard, is not always affordable in low-resource settings and does not predict spontaneous preterm birth, a leading cause of infant death. In a pilot study of 31 healthy pregnant women, we found that measurement of nine cell-free RNA (cfRNA) transcripts in maternal blood predicted gestational age with comparable accuracy to ultrasound but at substantially lower cost. In a related study of 38 women (25 full-term and 13 preterm deliveries), all at elevated risk of delivering preterm, we identified seven cfRNA transcripts that accurately classified women who delivered preterm up to 2 months in advance of labor. These tests hold promise for prenatal care in both the developed and developing worlds, although they require validation in larger, blinded clinical trials.
Journal Article
Greenlandic Inuit show genetic signatures of diet and climate adaptation
by
Albrechtsen, Anders
,
Jørgensen, Marit E.
,
Grarup, Niels
in
Acclimatization - genetics
,
Adaptation
,
Alleles
2015
The indigenous people of Greenland, the Inuit, have lived for a long time in the extreme conditions of the Arctic, including low annual temperatures, and with a specialized diet rich in protein and fatty acids, particularly omega-3 polyunsaturated fatty acids (PUFAs). A scan of Inuit genomes for signatures of adaptation revealed signals at several loci, with the strongest signal located in a cluster of fatty acid desaturases that determine PUFA levels. The selected alleles are associated with multiple metabolic and anthropometric phenotypes and have large effect sizes for weight and height, with the effect on height replicated in Europeans. By analyzing membrane lipids, we found that the selected alleles modulate fatty acid composition, which may affect the regulation of growth hormones. Thus, the Inuit have genetic and physiological adaptations to a diet rich in PUFAs.
Journal Article
Genetic predisposition to hypertension is associated with preeclampsia in European and Central Asian women
by
Thorleifsson, Gudmar
,
Engel, Stephanie M.
,
Auro, Kirsi M.
in
45/43
,
631/208/205/2138
,
692/699/2732
2020
Preeclampsia is a serious complication of pregnancy, affecting both maternal and fetal health. In genome-wide association meta-analysis of European and Central Asian mothers, we identify sequence variants that associate with preeclampsia in the maternal genome at
ZNF831
/20q13 and
FTO
/16q12. These are previously established variants for blood pressure (BP) and the
FTO
variant has also been associated with body mass index (BMI). Further analysis of BP variants establishes that variants at
MECOM
/3q26,
FGF5
/4q21 and
SH2B3
/12q24 also associate with preeclampsia through the maternal genome. We further show that a polygenic risk score for hypertension associates with preeclampsia. However, comparison with gestational hypertension indicates that additional factors modify the risk of preeclampsia.
Studies to identify maternal variants associated with preeclampsia have been limited by sample size. Here, the authors meta-analyze eight GWAS of 9,515 preeclamptic women, identifying five variants associated with preeclampsia and showing that genetic predisposition to hypertension is a major risk factor for preeclampsia.
Journal Article
Genetic regulation of spermine oxidase activity and cancer risk: a Mendelian randomization study
2021
Spermine oxidase (SMOX) catalyzes the oxidation of spermine to spermidine. Observational studies have reported SMOX as a source of reactive oxygen species associated with cancer, implying that inhibition of SMOX could be a target for chemoprevention. Here we test causality of SMOX levels with cancer risk using a Mendelian randomization analysis. We performed a GWAS of spermidine/spermine ratio to identify genetic variants associated with regulation of SMOX activity. Replication analysis was performed in two datasets of
SMOX
gene expression. We then did a Mendelian randomization analysis by testing the association between the SMOX genetic instrument and neuroblastoma, gastric, lung, breast, prostate, and colorectal cancers using GWAS summary statistics. GWAS of spermidine/spermine ratio identified
SMOX
locus (P = 1.34 × 10
–49
) explaining 32% of the variance. The lead SNP rs1741315 was also associated with
SMOX
gene expression in newborns (P = 8.48 × 10
–28
) and adults (P = 2.748 × 10
–8
) explaining 37% and 6% of the variance, respectively. Genetically determined SMOX activity was not associated with neuroblastoma, gastric, lung, breast, prostate nor colorectal cancer (P > 0.05). A PheWAS of rs1741315 did not reveal any relevant associations. Common genetic variation in the
SMOX
gene was strongly associated with SMOX activity in newborns, and less strongly in adults. Genetic down-regulation of SMOX was not significantly associated with lower odds of neuroblastoma, gastric, lung, breast, prostate and colorectal cancer. These results may inform studies of SMOX inhibition as a target for chemoprevention.
Journal Article
Comprehensive genome-wide association study of different forms of hernia identifies more than 80 associated loci
2022
Hernias are characterized by protrusion of an organ or tissue through its surrounding cavity and often require surgical repair. In this study we identify 65,492 cases for five hernia types in the UK Biobank and perform genome-wide association study scans for these five types and two combined groups. Our results show associated variants in all scans. Inguinal hernia has the most associations and we conduct a follow-up study with 23,803 additional cases from four study groups giving 84 independently associated variants. Identified variants from all scans are collapsed into 81 independent loci. Further testing shows that 26 loci are associated with more than one hernia type, suggesting substantial overlap between the underlying genetic mechanisms. Pathway analyses identify several genes with a strong link to collagen and/or elastin (
ADAMTS6
,
ADAMTS16
,
ADAMTSL3
,
LOX
,
ELN
) in the vicinity of associated loci for inguinal hernia, which substantiates an essential role of connective tissue morphology.
Hernias involve protrusion of an organ or tissue through its surrounding cavity. Here the authors carry out GWAS for five types of hernia and find 81 variants, most of which are associated with inguinal hernia; downstream analysis suggests an important role for connective tissue morphology.
Journal Article
Integrating genetics with newborn metabolomics in infantile hypertrophic pyloric stenosis
by
Courraud, Julie
,
Cohen, Arieh S.
,
Fadista, João
in
Biochemistry
,
Biomedical and Life Sciences
,
Biomedicine
2021
Introduction
Infantile hypertrophic pyloric stenosis (IHPS) is caused by hypertrophy of the pyloric sphincter muscle.
Objectives
Since previous reports have implicated lipid metabolism, we aimed to (1) investigate associations between IHPS and a wide array of lipid-related metabolites in newborns, and (2) address whether detected differences in metabolite levels were likely to be driven by genetic differences between IHPS cases and controls or by differences in early life feeding patterns.
Methods
We used population-based random selection of IHPS cases and controls born in Denmark between 1997 and 2014. We randomly took dried blood spots of newborns from 267 pairs of IHPS cases and controls matched by sex and day of birth. We used a mixed-effects linear regression model to evaluate associations between 148 metabolites and IHPS in a matched case–control design.
Results
The phosphatidylcholine PC(38:4) showed significantly lower levels in IHPS cases (
P
= 4.68 × 10
−8
) as did six other correlated metabolites (four phosphatidylcholines, acylcarnitine AC(2:0), and histidine). Associations were driven by 98 case–control pairs born before 2009, when median age at sampling was 6 days. No association was seen in 169 pairs born in 2009 or later, when median age at sampling was 2 days. More IHPS cases than controls had a diagnosis for neonatal difficulty in feeding at breast (
P
= 6.15 × 10
−3
). Genetic variants known to be associated with PC(38:4) levels did not associate with IHPS.
Conclusions
We detected lower levels of certain metabolites in IHPS, possibly reflecting different feeding patterns in the first days of life.
Journal Article
Variants in the fetal genome near pro-inflammatory cytokine genes on 2q13 associate with gestational duration
2019
The duration of pregnancy is influenced by fetal and maternal genetic and non-genetic factors. Here we report a fetal genome-wide association meta-analysis of gestational duration, and early preterm, preterm, and postterm birth in 84,689 infants. One locus on chromosome 2q13 is associated with gestational duration; the association is replicated in 9,291 additional infants (combined
P
= 3.96 × 10
−14
). Analysis of 15,588 mother-child pairs shows that the association is driven by fetal rather than maternal genotype. Functional experiments show that the lead SNP, rs7594852, alters the binding of the HIC1 transcriptional repressor. Genes at the locus include several interleukin 1 family members with roles in pro-inflammatory pathways that are central to the process of parturition. Further understanding of the underlying mechanisms will be of great public health importance, since giving birth either before or after the window of term gestation is associated with increased morbidity and mortality.
Gestational duration depends on both maternal and fetal genetic influences. Here, the authors perform a fetal genome-wide association meta-analysis and find that a locus on 2q13 is associated with pregnancy duration and further show that the lead SNP rs7594852 changes the binding properties of transcriptional repressor HIC1.
Journal Article
An Aboriginal Australian Genome Reveals Separate Human Dispersals into Asia
by
Jombart, Thibaut
,
Lindgreen, Stinus
,
de Knijff, Peter
in
Aboriginal Australians
,
Admixtures
,
Africa
2011
We present an Aboriginal Australian genomic sequence obtained from a 100-year-old lock of hair donated by an Aboriginal man from southern Western Australia in the early 20th century. We detect no evidence of European admixture and estimate contamination levels to be below 0.5%. We show that Aboriginal Australians are descendants of an early human dispersal into eastern Asia, possibly 62,000 to 75,000 years ago. This dispersal is separate from the one that gave rise to modern Asians 25,000 to 38,000 years ago. We also find evidence of gene flow between populations of the two dispersal waves prior to the divergence of Native Americans from modern Asian ancestors. Our findings support the hypothesis that present-day Aboriginal Australians descend from the earliest humans to occupy Australia, likely representing one of the oldest continuous populations outside Africa.
Journal Article
Maternal and fetal genetic contribution to gestational weight gain
2018
Background:Clinical recommendations to limit gestational weight gain (GWG) imply high GWG is causally related to adverse outcomes in mother or offspring, but GWG is the sum of several inter-related complex phenotypes (maternal fat deposition and vascular expansion, placenta, amniotic fluid and fetal growth). Understanding the genetic contribution to GWG could help clarify the potential effect of its different components on maternal and offspring health. Here we explore the genetic contribution to total, early and late GWG.Participants and methods:A genome-wide association study was used to identify maternal and fetal variants contributing to GWG in up to 10 543 mothers and 16 317 offspring of European origin, with replication in 10 660 mothers and 7561 offspring. Additional analyses determined the proportion of variability in GWG from maternal and fetal common genetic variants and the overlap of established genome-wide significant variants for phenotypes relevant to GWG (for example, maternal body mass index (BMI) and glucose, birth weight).Results:Approximately 20% of the variability in GWG was tagged by common maternal genetic variants, and the fetal genome made a surprisingly minor contribution to explain variation in GWG. Variants near the pregnancy-specific beta-1 glycoprotein 5 (PSG5) gene reached genome-wide significance (P=1.71 × 10-8 ) for total GWG in the offspring genome, but did not replicate. Some established variants associated with increased BMI, fasting glucose and type 2 diabetes were associated with lower early, and higher later GWG. Maternal variants related to higher systolic blood pressure were related to lower late GWG. Established maternal and fetal birth weight variants were largely unrelated to GWG.Conclusions:We found a modest contribution of maternal common variants to GWG and some overlap of maternal BMI, glucose and type 2 diabetes variants with GWG. These findings suggest that associations between GWG and later offspring/maternal outcomes may be due to the relationship of maternal BMI and diabetes with GWG.
Journal Article