Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
23
result(s) for
"Sleeter, Benjamin M"
Sort by:
Natural climate solutions provide robust carbon mitigation capacity under future climate change scenarios
by
Marvin, David C.
,
Sleeter, Benjamin M.
,
Cameron, D. Richard
in
631/158/2165
,
631/158/2445
,
631/158/843
2023
Natural climate solutions (NCS) are recognized as an important tool for governments to reduce greenhouse gas emissions and remove atmospheric carbon dioxide. Using California as a globally relevant reference, we evaluate the magnitude of biological climate mitigation potential from NCS starting in 2020 under four climate change scenarios. By mid-century NCS implementation leads to a large increase in net carbon stored, flipping the state from a net source to a net sink in two scenarios. Forest and conservation land management strategies make up 85% of all NCS emissions reductions by 2050, with agricultural strategies accounting for the remaining 15%. The most severe climate change impacts on ecosystem carbon materialize in the latter half of the century with three scenarios resulting in California ecosystems becoming a net source of carbon emissions under a baseline trajectory. However, NCS provide a strong attenuating effect, reducing land carbon emissions 41–54% by 2100 with total costs of deployment of 752–777 million USD annually through 2050. Rapid implementation of a portfolio of NCS interventions provides long-term investment in protecting ecosystem carbon in the face of climate change driven disturbances. This open-source, spatially-explicit framework can help evaluate risks to NCS carbon storage stability, implementation costs, and overall mitigation potential for NCS at jurisdictional scales.
Journal Article
Future land-use related water demand in California
by
Wilson, Tamara S
,
Sleeter, Benjamin M
,
Cameron, D Richard
in
Agricultural land
,
California
,
Climate change
2016
Water shortages in California are a growing concern amidst ongoing drought, earlier spring snowmelt, projected future climate warming, and currently mandated water use restrictions. Increases in population and land use in coming decades will place additional pressure on already limited available water supplies. We used a state-and-transition simulation model to project future changes in developed (municipal and industrial) and agricultural land use to estimate associated water use demand from 2012 to 2062. Under current efficiency rates, total water use was projected to increase 1.8 billion cubic meters (+4.1%) driven primarily by urbanization and shifts to more water intensive crops. Only if currently mandated 25% reductions in municipal water use are continuously implemented would water demand in 2062 balance to water use levels in 2012. This is the first modeling effort of its kind to examine regional land-use related water demand incorporating historical trends of both developed and agricultural land uses.
Journal Article
Mediterranean California’s water use future under multiple scenarios of developed and agricultural land use change
by
Cameron, D. Richard
,
Wilson, Tamara S.
,
Sleeter, Benjamin M.
in
Agricultural expansion
,
Agricultural industry
,
Agricultural land
2017
With growing demand and highly variable inter-annual water supplies, California's water use future is fraught with uncertainty. Climate change projections, anticipated population growth, and continued agricultural intensification, will likely stress existing water supplies in coming decades. Using a state-and-transition simulation modeling approach, we examine a broad suite of spatially explicit future land use scenarios and their associated county-level water use demand out to 2062. We examined a range of potential water demand futures sampled from a 20-year record of historical (1992-2012) data to develop a suite of potential future land change scenarios, including low/high change scenarios for urbanization and agriculture as well as \"lowest of the low\" and \"highest of the high\" anthropogenic use. Future water demand decreased 8.3 billion cubic meters (Bm3) in the lowest of the low scenario and decreased 0.8 Bm3 in the low agriculture scenario. The greatest increased water demand was projected for the highest of the high land use scenario (+9.4 Bm3), high agricultural expansion (+4.6 Bm3), and high urbanization (+2.1 Bm3) scenarios. Overall, these scenarios show agricultural land use decisions will likely drive future demand more than increasing municipal and industrial uses, yet improved efficiencies across all sectors could lead to potential water use savings. Results provide water managers with information on diverging land use and water use futures, based on historical, observed land change trends and water use histories.
Journal Article
Integrated climate and land use change scenarios for California rangeland ecosystem services: wildlife habitat, soil carbon, and water supply
by
Soulard, Christopher E
,
Sleeter, Benjamin M
,
Casey, Clyde F
in
Agricultural expansion
,
Agricultural land
,
Agriculture
2015
CONTEXT: In addition to biodiversity conservation, California rangelands generate multiple ecosystem services including livestock production, drinking and irrigation water, and carbon sequestration. California rangeland ecosystems have experienced substantial conversion to residential land use and more intensive agriculture. OBJECTIVES: To understand the potential impacts to rangeland ecosystem services, we developed six spatially explicit (250 m) climate/land use change scenarios for the Central Valley of California and surrounding foothills consistent with three Intergovernmental Panel on Climate Change emission scenario narratives. METHODS: We quantified baseline and projected change in wildlife habitat, soil organic carbon (SOC), and water supply (recharge and runoff). For six case study watersheds we quantified the interactions of future development and changing climate on recharge, runoff and streamflow, and precipitation thresholds where dominant watershed hydrological processes shift through analysis of covariance. RESULTS: The scenarios show that across the region, habitat loss is expected to occur predominantly in grasslands, primarily due to future development (up to a 37 % decline by 2100), however habitat loss in priority conservation errors will likely be due to cropland and hay/pasture expansion (up to 40 % by 2100). Grasslands in the region contain approximately 100 teragrams SOC in the top 20 cm, and up to 39 % of this SOC is subject to conversion by 2100. In dryer periods recharge processes typically dominate runoff. Future development lowers the precipitation value at which recharge processes dominate runoff, and combined with periods of drought, reduces the opportunity for recharge, especially on deep soils. CONCLUSION: Results support the need for climate-smart land use planning that takes recharge areas into account, which will provide opportunities for water storage in dry years. Given projections for agriculture, more modeling is needed on feedbacks between agricultural expansion on rangelands and water supply.
Journal Article
Operational assessment tool for forest carbon dynamics for the United States: a new spatially explicit approach linking the LUCAS and CBM-CFS3 models
by
Rayfield Bronwyn
,
Frid Leonardo
,
Sleeter, Benjamin M
in
Annual variations
,
Carbon
,
Carbon budget
2022
BackgroundQuantifying the carbon balance of forested ecosystems has been the subject of intense study involving the development of numerous methodological approaches. Forest inventories, processes-based biogeochemical models, and inversion methods have all been used to estimate the contribution of U.S. forests to the global terrestrial carbon sink. However, estimates have ranged widely, largely based on the approach used, and no single system is appropriate for operational carbon quantification and forecasting. We present estimates obtained using a new spatially explicit modeling framework utilizing a “gain–loss” approach, by linking the LUCAS model of land-use and land-cover change with the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3).ResultsWe estimated forest ecosystems in the conterminous United States stored 52.0 Pg C across all pools. Between 2001 and 2020, carbon storage increased by 2.4 Pg C at an annualized rate of 126 Tg C year−1. Our results broadly agree with other studies using a variety of other methods to estimate the forest carbon sink. Climate variability and change was the primary driver of annual variability in the size of the net carbon sink, while land-use and land-cover change and disturbance were the primary drivers of the magnitude, reducing annual sink strength by 39%. Projections of carbon change under climate scenarios for the western U.S. find diverging estimates of carbon balance depending on the scenario. Under a moderate emissions scenario we estimated a 38% increase in the net sink of carbon, while under a high emissions scenario we estimated a reversal from a net sink to net source.ConclusionsThe new approach provides a fully coupled modeling framework capable of producing spatially explicit estimates of carbon stocks and fluxes under a range of historical and/or future socioeconomic, climate, and land management futures.
Journal Article
Ecosystem carbon balance in the Hawaiian Islands under different scenarios of future climate and land use change
by
Selmants, Paul C
,
Sleeter, Benjamin M
,
Trauernicht, Clay
in
Carbon
,
carbon balance
,
Carbon dioxide
2021
The State of Hawai‘i passed legislation to be carbon neutral by 2045, a goal that will partly depend on carbon sequestration by terrestrial ecosystems. However, there is considerable uncertainty surrounding the future direction and magnitude of the land carbon sink in the Hawaiian Islands. We used the Land Use and Carbon Scenario Simulator (LUCAS), a spatially explicit stochastic simulation model that integrates landscape change and carbon gain-loss, to assess how projected future changes in climate and land use will influence ecosystem carbon balance in the Hawaiian Islands under all combinations of two radiative forcing scenarios (RCPs 4.5 and 8.5) and two land use scenarios (low and high) over a 90 year timespan from 2010 to 2100. Collectively, terrestrial ecosystems of the Hawaiian Islands acted as a net carbon sink under low radiative forcing (RCP 4.5) for the entire 90 year simulation period, with low land use change further enhancing carbon sink strength. In contrast, Hawaiian terrestrial ecosystems transitioned from a net sink to a net source of CO2 to the atmosphere under high radiative forcing (RCP 8.5), with high land use accelerating this transition and exacerbating net carbon loss. A sensitivity test of the CO2 fertilization effect on plant productivity revealed it to be a major source of uncertainty in projections of ecosystem carbon balance, highlighting the need for greater mechanistic understanding of plant productivity responses to rising atmospheric CO2. Long-term model projections such as ours that incorporate the interactive effects of land use and climate change on regional ecosystem carbon balance will be critical to evaluating the potential of ecosystem-based climate mitigation strategies.
Journal Article
A carbon balance model for the great dismal swamp ecosystem
by
Williams, Brianna
,
Sleeter, Rachel
,
Sleeter, Benjamin M.
in
aboveground biomass
,
belowground biomass
,
Biomass
2017
Background
Carbon storage potential has become an important consideration for land management and planning in the United States. The ability to assess ecosystem carbon balance can help land managers understand the benefits and tradeoffs between different management strategies. This paper demonstrates an application of the Land Use and Carbon Scenario Simulator (LUCAS) model developed for local-scale land management at the Great Dismal Swamp National Wildlife Refuge. We estimate the net ecosystem carbon balance by considering past ecosystem disturbances resulting from storm damage, fire, and land management actions including hydrologic inundation, vegetation clearing, and replanting.
Results
We modeled the annual ecosystem carbon stock and flow rates for the 30-year historic time period of 1985–2015, using age-structured forest growth curves and known data for disturbance events and management activities. The 30-year total net ecosystem production was estimated to be a net sink of 0.97 Tg C. When a hurricane and six historic fire events were considered in the simulation, the Great Dismal Swamp became a net source of 0.89 Tg C. The cumulative above and below-ground carbon loss estimated from the South One and Lateral West fire events totaled 1.70 Tg C, while management activities removed an additional 0.01 Tg C. The carbon loss in below-ground biomass alone totaled 1.38 Tg C, with the balance (0.31 Tg C) coming from above-ground biomass and detritus.
Conclusions
Natural disturbances substantially impact net ecosystem carbon balance in the Great Dismal Swamp. Through alternative management actions such as re-wetting, below-ground biomass loss may have been avoided, resulting in the added carbon storage capacity of 1.38 Tg. Based on two model assumptions used to simulate the peat system, (a burn scar totaling 70 cm in depth, and the soil carbon accumulation rate of 0.36 t C/ha
−1
/year
−1
for Atlantic white cedar), the total soil carbon loss from the South One and Lateral West fires would take approximately 1740 years to re-amass. Due to the impractical time horizon this presents for land managers, this particular loss is considered permanent. Going forward, the baseline carbon stock and flow parameters presented here will be used as reference conditions to model future scenarios of land management and disturbance.
Journal Article
Substantially Greater Carbon Emissions Estimated Based on Annual Land-Use Transition Data
by
Sleeter, Benjamin M.
,
Zhu, Zhiliang
,
Diao, Jiaojiao
in
Agricultural expansion
,
Agricultural land
,
Agriculture
2020
Quantifying land-use and land-cover change (LULCC) effects on carbon sources and sinks has been very challenging because of the availability and quality of LULCC data. As the largest estuary in the United States, Chesapeake Bay is a rapidly changing region and is affected by human activities. A new annual land-use and land-cover (LULC) data product developed by the U.S. Geological Survey Land Change Monitoring and Analysis Program (LCMAP) from 2001 to 2011 was analyzed for transitions between agricultural land, developed land, grassland, forest land and wetland. The Land Use and Carbon Scenario Simulator was used to simulate effects of LULCC and ecosystem disturbance in the south of the Chesapeake Bay Watershed (CBW) on carbon storage and fluxes, with carbon parameters derived from the Integrated Biosphere Simulator. We found that during the study period: (1) areas of forest land, disturbed land, agricultural land and wetland decreased by 90, 82, 57, and 65 km2, respectively, but developed lands gained 293 km2 (29 km2 annually); (2) total ecosystem carbon stock in the CBW increased by 13 Tg C from 2001 to 2011, mainly due to carbon sequestration of the forest ecosystem; (3) carbon loss was primarily attributed to urbanization (0.224 Tg C·yr−1) and agricultural expansion (0.046 Tg C·yr−1); and (4) estimated carbon emissions and harvest wood products were greater when estimated with the annual LULC input. We conclude that a dense time series of LULCC, such as that of the LCMAP program, may provide a more accurate accounting of the effects of land use change on ecosystem carbon, which is critical to understanding long-term ecosystem carbon dynamics.
Journal Article
Simulating burn severity maps at 30 meters in two forested regions in California
by
Baldwin, W Jonathan
,
Westerling, A LeRoy
,
Sleeter, Benjamin M
in
Acuity
,
burn severity
,
Climate change
2022
Climate change is altering wildfire and vegetation regimes in California’s forested ecosystems. Present day fires are seeing an increase in high burn severity area and high severity patch size. The ability to predict future burn severity patterns could better support policy and land management decisions. Here we demonstrate a methodology to first, statistically estimate individual burn severity classes at 30 meters and second, cluster and smooth high severity patches onto a known landscape. Our goal here was not to exactly replicate observed burn severity maps, but rather to utilize observed maps as one realization of a random process dependent on climate, topography, fire weather, and fuels, to inform creation of additional realizations through our simulation technique. We developed two sets of empirical models with two different vegetation datasets to test if coarse vegetation could accurately model for burn severity. While visual acuity can be used to assess the performance of our simulation process, we also employ the Ripley’s K function to compare spatial point processes at different scales to test if the simulation is capturing an appropriate amount of clustering. We utilize FRAGSTATS to obtain high severity patch metrics to test the contiguity of our high severity simulation. Ripley’s K function helped identify the number of clustering iterations and FRAGSTATS showed how different focal window sizes affected our ability to cluster high severity patches. Improving our ability to simulate burn severity may help advance our understanding of the potential influence of land and fuels management on ecosystem-level response variables that are important for decision-makers. Simulated burn severity maps could support managing habitat and estimating risks of habitat loss, protecting infrastructure and homes, improving future wildfire emissions projections, and better mapping and planning for fuels treatment scenarios.
Journal Article
Spatially explicit modeling of 1992-2100 land cover and forest stand age for the conterminous United States
by
Sayler, Kristi L.
,
Sohl, Terry L.
,
Bennett, Stacie L.
in
Agricultural land
,
Biodiversity
,
carbon
2014
Information on future land-use and land-cover (LULC) change is needed to analyze the impact of LULC change on ecological processes. The U.S. Geological Survey has produced spatially explicit, thematically detailed LULC projections for the conterminous United States. Four qualitative and quantitative scenarios of LULC change were developed, with characteristics consistent with the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES). The four quantified scenarios (A1B, A2, B1, and B2) served as input to the forecasting scenarios of land-use change (FORE-SCE) model. Four spatially explicit data sets consistent with scenario storylines were produced for the conterminous United States, with annual LULC maps from 1992 through 2100. The future projections are characterized by a loss of natural land covers in most scenarios, with corresponding expansion of anthropogenic land uses. Along with the loss of natural land covers, remaining natural land covers experience increased fragmentation under most scenarios, with only the B2 scenario remaining relatively stable in both the proportion of remaining natural land covers and basic fragmentation measures. Forest stand age was also modeled. By 2100, scenarios and ecoregions with heavy forest cutting had relatively lower mean stand ages compared to those with less forest cutting. Stand ages differed substantially between unprotected and protected forest lands, as well as between different forest classes. The modeled data were compared to the National Land Cover Database (NLCD) and other data sources to assess model characteristics. The consistent, spatially explicit, and thematically detailed LULC projections and the associated forest stand-age data layers have been used to analyze LULC impacts on carbon and greenhouse gas fluxes, biodiversity, climate and weather variability, hydrologic change, and other ecological processes.
Journal Article