Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
11,580
result(s) for
"Song, Cheng"
Sort by:
Shape and stiffness memory ionogels with programmable pressure-resistance response
by
Rong, Qinfeng
,
Zhuo, Shuyun
,
Liu, Mingjie
in
147/135
,
639/301/1005/1009
,
639/638/298/923/1027
2022
Flexible pressure sensors usually require functional materials with both mechanical compliance and appropriate electrical performance. Most sensors based on materials with limited compressibility can hardly balance between high sensitivity and broad pressure range. Here, we prepare a heterophasic ionogel with shape and stiffness memory for adaptive pressure sensors. By combining the microstructure alignment for stiffness changing and shape memory micro-inclusions for stiffness fixing, the heterophasic ionogels reveal tunable compressibility. This controllable pressure-deformation property of the ionogels results in the pressure sensors’ programmable pressure-resistance behavior with tunable pressure ranges, varied detection limits, and good resolution at high pressure. Broad pressure ranges to 220 and 380 kPa, and tunable detection limit from 120 to 330 and 950 Pa are realized by the stiffness memory ionogel sensors. Adaptive detection is also brought out to monitor tiny pressure changes at low stiffness and distinguish different human motions at high stiffness. Using shape and stiffness memory materials in pressure sensors is a general design to achieve programmable performance for more complex application scenarios.
Flexible pressure sensors require functional materials accounting for mechanical compliance and electrical performance simultaneously but sensor materials often suffer from limited compressibility which decreases sensitivity over a large pressure range. Here, the authors demonstrate a heterophase ionogel with shape and stiffness memory for adaptive pressure sensing
Journal Article
Electric field control of Néel spin–orbit torque in an antiferromagnet
2019
Electric field control of spin–orbit torque in ferromagnets1 has been intensively pursued in spintronics to achieve efficient memory and computing devices with ultralow energy consumption. Compared with ferromagnets, antiferromagnets2,3 have huge potential in high-density information storage because of their ultrafast spin dynamics and vanishingly small stray field4–7. However, the manipulation of spin–orbit torque in antiferromagnets using electric fields remains elusive. Here we use ferroelastic strain from piezoelectric materials to switch the uniaxial magnetic anisotropy in antiferromagnetic Mn2Au films with an electric field of only a few kilovolts per centimetre at room temperature. Owing to the uniaxial magnetic anisotropy, we observe an asymmetric Néel spin–orbit torque8,9 in the Mn2Au, which is used to demonstrate an antiferromagnetic ratchet. The asymmetry of the Néel spin–orbit torque and the corresponding antiferromagnetic ratchet can be reversed by the electric field. Our finding sheds light on antiferromagnet-based memories with ultrahigh density and high energy efficiency.
Journal Article
Thermal Degradation of Bioactive Compounds during Drying Process of Horticultural and Agronomic Products: A Comprehensive Overview
by
Al-Rejaie, Salim
,
Liu, Chuanping
,
Rayan, Ahmed M.
in
Agricultural commodities
,
Agricultural products
,
agronomy
2023
Over the last few decades, many researchers have investigated in detail the characteristics of bioactive compounds such as polyphenols, vitamins, flavonoids, and glycosides, and volatile compounds in fruits, vegetables and medicinal and aromatic plants that possess beneficial properties, as well as consumer acceptance and preference. The main aim of this article is to provide an updated overview of recent research endeavors related to the effects of the drying process on the major bioactive/effective compounds in agricultural products. Particular emphasis was placed on details related to the changes occurring in vitamin C, polyphenols, flavonoids, glycosides and volatile compounds, as well as the antioxidant activity. An analysis of the degradation mechanisms of these compounds showed that vitamin C, phenols, flavonoids and glycosides react with oxygen during the convective drying process under high drying temperatures, and the reaction rate results in degradation in such bioactive compounds due to high reducibility. On the other hand, high temperature results in a short drying time, thus minimizing the degradation of bioactive compounds. The reviewed research works addressing this trend revealed that the ideal drying temperatures for retaining vitamin C, polyphenols, flavonoids, glycosides, volatile compounds and their antioxidant activity were 50–60 °C, 55–60 °C, 60–70 °C, 45–50 °C, 40–50 °C and 50–70 °C, respectively. In conclusion, to maintain plant bioactive components, convective drying at relatively low drying temperatures is strongly recommended.
Journal Article
The Multifaceted Roles of MYC2 in Plants: Toward Transcriptional Reprogramming and Stress Tolerance by Jasmonate Signaling
by
Cao, Yunpeng
,
Dai, Jun
,
Manzoor, Muhammad Aamir
in
Amino acids
,
Cellular stress response
,
crosstalk
2022
Environmental stress is one of the major restrictions on plant development and foodstuff production. The adaptive response in plants largely occurs through an intricate signaling system, which is crucial for regulating the stress-responsive genes. Myelocytomatosis (MYC) transcription factors are the fundamental regulators of the jasmonate (JA) signaling branch that participates in plant development and multiple stresses. By binding to the cis -acting elements of a large number of stress-responsive genes, JA-responsive transcription factors activate the stress-resistant defense genes. The mechanism of stress responses concerns myriad regulatory processes at the physiological and molecular levels. Discovering stress-related regulatory factors is of great value in disclosing the response mechanisms of plants to biotic or abiotic stress, which could guide the genetic improvement of plant resistance. This review summarizes recent researches in various aspects of MYC2-mediated JA signaling and emphasizes MYC2 involvement in plant growth and stress response.
Journal Article
M2 Macrophage-Derived Exosomes Inhibit Apoptosis of HUVEC Cell through Regulating miR-221-3p Expression
2022
Atherosclerosis (AS) is associated with high morbidity and mortality rates and currently has no effective treatment. This study was aimed at investigating the role of macrophage exosomes in the inflammation and apoptosis after HUVEC injury. We established the HUVEC injury model using 100 mg/L oxidized low-density lipoprotein (ox-LDL) or 50 ng/mL tumor necrosis factor-α (TNF-α). Cell proliferation was assessed using cell counting kit-8 (CCK8) assays, and the expression of miR-221, TNF-α, and IL-6, IL-10, and IL-1β was detected using quantitative real-time PCR (qRT-PCR). The apoptotic rate was analyzed by the TUNEL method, and the expressions of apoptosis-related proteins Bcl2, Caspase-3, and c-myc were detected by western blotting. Finally, miR-221-3p mimics and miR-221-3p inhibitors were constructed by liposome transfection to determine the mechanism of action of macrophage exosomes on HUVEC injury. The expression levels of IL-6, IL-1β, and TNF-α in the injury groups were higher than those in the normal group, but the expression of IL-10 in the injury groups was lower than that in the normal group. Meanwhile, the apoptotic rate of the HUVEC cell injury group was higher than that of the normal group. In contrast, the expression levels of IL-6, IL-1β, and TNF-α were lower in the M2 macrophage exosome (M2-Exo) group, but the expression of IL-10 was higher compared with the control group. The apoptosis rate was reduced in the M2-Exo group, and the expression of the proapoptotic gene Caspase-3 was reduced, while the expression of the antiapoptotic gene Bcl2 was increased. Liposome transfection of miR-221-3p mimics was able to enhance the effect of M2 macrophage exosomes. Thus, M2-Exo promotes HUVEC cell proliferation and inhibits HUVEC cell inflammation and apoptosis. miR-221-3p overexpression attenuates HUVEC cell injury-induced inflammatory response and apoptosis, while miR-221-3p gene inhibition enhances this inflammatory response and apoptosis.
Journal Article
Observation of the antiferromagnetic spin Hall effect
2021
The discovery of the spin Hall effect
1
enabled the efficient generation and manipulation of the spin current. More recently, the magnetic spin Hall effect
2
,
3
was observed in non-collinear antiferromagnets, where the spin conservation is broken due to the non-collinear spin configuration. This provides a unique opportunity to control the spin current and relevant device performance with controllable magnetization. Here, we report a magnetic spin Hall effect in a collinear antiferromagnet, Mn
2
Au. The spin currents are generated at two spin sublattices with broken spatial symmetry, and the antiparallel antiferromagnetic moments play an important role. Therefore, we term this effect the ‘antiferromagnetic spin Hall effect’. The out-of-plane spins from the antiferromagnetic spin Hall effect are favourable for the efficient switching of perpendicular magnetized devices, which is required for high-density applications. The antiferromagnetic spin Hall effect adds another twist to the atomic-level control of spin currents via the antiferromagnetic spin structure.
A magnetic spin Hall effect is reported in the collinear antiferromagnet Mn
2
Au.
Journal Article
Preventable burden of head and neck cancer attributable to tobacco and alcohol between 1990 and 2039 in China
by
Song, Cheng
,
Qiao, Youlin
,
Chen, Yahan
in
Adenomatous polyposis coli
,
age‐period‐cohort analysis
,
Alcohol Drinking - adverse effects
2023
Tobacco use and heavy alcohol consumption are risk factors for head and neck cancer (HNC), including oral, pharynx, and larynx cancer. No study has investigated the preventable burden of HNC attributable to tobacco and alcohol in China. We extracted data from 1990 to 2019 from the Global Burden of Disease. The preventable burden attributable to tobacco and alcohol was estimated by subtracting the overlapping fraction derived from a literature search. Descriptive analyses were performed initially, followed by joinpoint regression and age‐period‐cohort (APC) analysis. The future burden was forecasted using a Bayesian APC model. The crude burden increased significantly, while the age‐standardized rates showed a downward trend from 1990 to 2019 in China. Both all‐age and age‐standardized population attributable fractions rose significantly, potentially due to the poor prognosis of tobacco‐ and alcohol‐associated HNC. The absolute burden would continue to climb in the next 20 years from 2019, largely due to population aging. For site‐specific burden, compared with total, pharynx, and larynx cancer burden, the substantial upward trend of oral cancer burden indicated a strong interaction with risk factors such as genetic susceptibility, betel nut chewing, oral microbiota, and human papillomavirus. The burden of oral cancer attributable to tobacco and alcohol is a major concern and is anticipated to become more severe than cancer in other anatomic sites. Altogether, our study provides useful information to rethink the current restrictions on tobacco and alcohol, lean healthcare resources, and develop effective HNC prevention and control strategies. The absolute burden will continue to climb in the next 20 years from 2019, largely due to population aging. The substantial upward trend of oral cancer indicates a strong interaction with other risk factors.
Journal Article
Cluster magnetic octupole induced out-of-plane spin polarization in antiperovskite antiferromagnet
by
Fan, Xiaolong
,
Chen, Tongjin
,
Pan, Feng
in
639/301/357/997
,
639/766/119/1001
,
Antiferromagnetism
2021
Out-of-plane spin polarization
σ
z
has attracted increasing interests of researchers recently, due to its potential in high-density and low-power spintronic devices. Noncollinear antiferromagnet (AFM), which has unique 120° triangular spin configuration, has been discovered to possess
σ
z
. However, the physical origin of
σ
z
in noncollinear AFM is still not clear, and the external magnetic field-free switching of perpendicular magnetic layer using the corresponding
σ
z
has not been reported yet. Here, we use the cluster magnetic octupole in antiperovskite AFM Mn
3
SnN to demonstrate the generation of
σ
z
.
σ
z
is induced by the precession of carrier spins when currents flow through the cluster magnetic octupole, which also relies on the direction of the cluster magnetic octupole in conjunction with the applied current. With the aid of
σ
z
, current induced spin-orbit torque (SOT) switching of adjacent perpendicular ferromagnet is realized without external magnetic field. Our findings present a new perspective to the generation of out-of-plane spin polarizations via noncollinear AFM spin structure, and provide a potential path to realize ultrafast high-density applications.
One consistent challenge in spintronics is electrical control of the magnetisation. Here, You et al demonstrate switching of magnetisation in a heterostucture composed of Mn3SnN and Permalloy, making use of the out-of-plane spin polarization induced by currents in the antiferromagnetic Mn3SnN.
Journal Article
Review on the Development and Applications of Medicinal Plant Genomes
2021
With the development of sequencing technology, the research on medicinal plants is no longer limited to the aspects of chemistry, pharmacology, and pharmacodynamics, but reveals them from the genetic level. As the price of next-generation sequencing technology becomes affordable, and the long-read sequencing technology is established, the medicinal plant genomes with large sizes have been sequenced and assembled more easily. Although the review of plant genomes has been reported several times, there is no review giving a systematic and comprehensive introduction about the development and application of medicinal plant genomes that have been reported until now. Here, we provide a historical perspective on the current situation of genomes in medicinal plant biology, highlight the use of the rapidly developing sequencing technologies, and conduct a comprehensive summary on how the genomes apply to solve the practical problems in medicinal plants, like genomics-assisted herb breeding, evolution history revelation, herbal synthetic biology study, and geoherbal research, which are important for effective utilization, rational use and sustainable protection of medicinal plants.
Journal Article
Information Perspective to Probabilistic Modeling: Boltzmann Machines versus Born Machines
2018
We compare and contrast the statistical physics and quantum physics inspired approaches for unsupervised generative modeling of classical data. The two approaches represent probabilities of observed data using energy-based models and quantum states, respectively. Classical and quantum information patterns of the target datasets therefore provide principled guidelines for structural design and learning in these two approaches. Taking the Restricted Boltzmann Machines (RBM) as an example, we analyze the information theoretical bounds of the two approaches. We also estimate the classical mutual information of the standard MNIST datasets and the quantum Rényi entropy of corresponding Matrix Product States (MPS) representations. Both information measures are much smaller compared to their theoretical upper bound and exhibit similar patterns, which imply a common inductive bias of low information complexity. By comparing the performance of RBM with various architectures on the standard MNIST datasets, we found that the RBM with local sparse connection exhibit high learning efficiency, which supports the application of tensor network states in machine learning problems.
Journal Article