Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
9 result(s) for "Steer, Juliette"
Sort by:
Population-scale single-cell RNA-seq profiling across dopaminergic neuron differentiation
Studying the function of common genetic variants in primary human tissues and during development is challenging. To address this, we use an efficient multiplexing strategy to differentiate 215 human induced pluripotent stem cell (iPSC) lines toward a midbrain neural fate, including dopaminergic neurons, and use single-cell RNA sequencing (scRNA-seq) to profile over 1 million cells across three differentiation time points. The proportion of neurons produced by each cell line is highly reproducible and is predictable by robust molecular markers expressed in pluripotent cells. Expression quantitative trait loci (eQTL) were characterized at different stages of neuronal development and in response to rotenone-induced oxidative stress. Of these, 1,284 eQTL colocalize with known neurological trait risk loci, and 46% are not found in the Genotype–Tissue Expression (GTEx) catalog. Our study illustrates how coupling scRNA-seq with long-term iPSC differentiation enables mechanistic studies of human trait-associated genetic variants in otherwise inaccessible cell states. Single-cell RNA-seq analysis of iPSC neural differentiation identifies markers that predict line-to-line differences in cell fate potential and eQTLs that are specific to different stages of differentiation and that overlap with GWAS risk variants for neurological traits.
Phase 1 clinical study of an embryonic stem cell–derived retinal pigment epithelium patch in age-related macular degeneration
An engineered patch of retinal pigment epithelium generated from human embryonic stem cells is transplanted into the eyes of two patients. Age-related macular degeneration (AMD) remains a major cause of blindness, with dysfunction and loss of retinal pigment epithelium (RPE) central to disease progression. We engineered an RPE patch comprising a fully differentiated, human embryonic stem cell (hESC)–derived RPE monolayer on a coated, synthetic basement membrane. We delivered the patch, using a purpose-designed microsurgical tool, into the subretinal space of one eye in each of two patients with severe exudative AMD. Primary endpoints were incidence and severity of adverse events and proportion of subjects with improved best-corrected visual acuity of 15 letters or more. We report successful delivery and survival of the RPE patch by biomicroscopy and optical coherence tomography, and a visual acuity gain of 29 and 21 letters in the two patients, respectively, over 12 months. Only local immunosuppression was used long-term. We also present the preclinical surgical, cell safety and tumorigenicity studies leading to trial approval. This work supports the feasibility and safety of hESC-RPE patch transplantation as a regenerative strategy for AMD.
Single-cell transcriptomics defines an improved, validated monoculture protocol for differentiation of human iPSC to microglia
There is increasing genetic evidence for the role of microglia in neurodegenerative diseases, including Alzheimer’s, Parkinson’s, and motor neuron disease. Therefore, there is a need to generate authentic in vitro models to study human microglial physiology. Various methods have been developed using human induced Pluripotent Stem Cells (iPSC) to generate microglia, however, systematic approaches to identify which media components are actually essential for functional microglia are mostly lacking. Here, we systematically assess medium components, coatings, and growth factors required for iPSC differentiation to microglia. Using single-cell RNA sequencing, qPCR, and functional assays, with validation across two labs, we have identified several medium components from previous protocols that are redundant and do not contribute to microglial identity. We provide an optimised, defined medium which produces both transcriptionally and functionally relevant microglia for modelling microglial physiology in neuroinflammation and for drug discovery.
Directing Differentiation of Pluripotent Stem Cells Toward Retinal Pigment Epithelium Lineage
Development of efficient and reproducible conditions for directed differentiation of pluripotent stem cells into specific cell types is important not only to understand early human development but also to enable more practical applications, such as in vitro disease modeling, drug discovery, and cell therapies. The differentiation of stem cells to retinal pigment epithelium (RPE) in particular holds promise as a source of cells for therapeutic replacement in age‐related macular degeneration. Here we show development of an efficient method for deriving homogeneous RPE populations in a period of 45 days using an adherent, monolayer system and defined xeno‐free media and matrices. The method utilizes sequential inhibition and activation of the Activin and bone morphogenetic protein signaling pathways and can be applied to both human embryonic stem cells and induced pluripotent stem cells as the starting population. In addition, we use whole genome transcript analysis to characterize cells at different stages of differentiation that provides further understanding of the developmental dynamics and fate specification of RPE. We show that with the described method, RPE develop through stages consistent with their formation during embryonic development. This characterization— together with the absence of steps involving embryoid bodies, three‐dimensional culture, or manual dissections, which are common features of other protocols—makes this process very attractive for use in research as well as for clinical applications. Stem Cells Translational Medicine 2017;6:490–501
Directing Differentiation of Pluripotent Stem Cells Toward Retinal Pigment Epithelium Lineage
: Development of efficient and reproducible conditions for directed differentiation of pluripotent stem cells into specific cell types is important not only to understand early human development but also to enable more practical applications, such as in vitro disease modeling, drug discovery, and cell therapies. The differentiation of stem cells to retinal pigment epithelium (RPE) in particular holds promise as a source of cells for therapeutic replacement in age-related macular degeneration. Here we show development of an efficient method for deriving homogeneous RPE populations in a period of 45 days using an adherent, monolayer system and defined xeno-free media and matrices. The method utilizes sequential inhibition and activation of the Activin and bone morphogenetic protein signaling pathways and can be applied to both human embryonic stem cells and induced pluripotent stem cells as the starting population. In addition, we use whole genome transcript analysis to characterize cells at different stages of differentiation that provides further understanding of the developmental dynamics and fate specification of RPE. We show that with the described method, RPE develop through stages consistent with their formation during embryonic development. This characterization- together with the absence of steps involving embryoid bodies, three-dimensional culture, or manual dissections, which are common features of other protocols-makes this process very attractive for use in research as well as for clinical applications. This report describes a novel method of directed differentiation to generate retinal pigment epithelium (RPE) cells from pluripotent stem cells. The employed method is based on adherent monolayer culture using xeno-free conditions and manipulation of the Activin and bone morphogenetic protein signaling pathway using small molecules and recombinant proteins. Whole genome microarray analysis was performed to characterize the differentiation process and understand the developmental path of RPE generation in vitro. This method can be applied for generation of RPE for research as well as for clinical applications.
An Alzheimer's disease-associated common regulatory variant in a PTK2B intron alters microglial function
Genome-wide association studies (GWAS) are revealing an ever-growing number of genetic associations with disease, but identifying and functionally validating the causal variants underlying these associations is very challenging and has only been done for a vanishingly small number of variants. Here we validate a single nucleotide polymorphism (SNP) associated with an increased risk of Alzheimer′s disease (AD) in an intronic enhancer of the PTK2B gene, by engineering it into human induced pluripotent stem cells (hiPSCs). Upon differentiation to macrophages and microglia, this variant shows effects on chromatin accessibility of the enhancer and increased binding of the transcription factor CEBPB but only subtle effects on PTK2B or CLU expression. Nevertheless, this variant results in global changes to the transcriptome and phenotype of these cells. Expression of interferon gamma responsive genes including chemokine transcripts and their protein products are altered, and chemotaxis of the resulting microglial cells is affected. This variant thus causes disease-relevant transcriptomic and phenotypic changes, and we propose that it acts by altering microglia reactivity, consistent with the role of these cells in progression of AD.Competing Interest StatementA.B. is a founder of EnsoCell therapeutics. N.I.P. was an employee of GSK at the time the manuscript was submitted. J.S. was an employee of Illumina at the time the manuscript was submitted.Footnotes* Revised figures to include individual datapoints, altered discussion of data and included additional raw data in new supplementary tables.
Single-cell transcriptomics defines an improved, validated monoculture protocol for differentiation of human iPSCs to microglia
There is increasing genetic evidence for the role of microglia in neurodegenerative diseases, including Alzheimer’s, Parkinson’s, and motor neuron disease. Therefore, there is a need to generate authentic in vitro models to study human microglial physiology. Various methods have been developed using human induced Pluripotent Stem Cells (iPSC) to generate microglia, however, systematic approaches to identify which media components are actually essential for functional microglia are mostly lacking. Here, we systematically assess medium components, coatings, and growth factors required for iPSC differentiation to microglia. Using single-cell RNA sequencing, qPCR, and functional assays, with validation across two labs, we have identified several medium components from previous protocols that are redundant and do not contribute to microglial identity. We provide an optimised, defined medium which produces both transcriptionally and functionally relevant microglia for modelling microglial physiology in neuroinflammation and for drug discovery.
Population-scale single-cell RNA-seq profiling across dopaminergic neuron differentiation
Common genetic variants can have profound effects on cellular function, but studying these effects in primary human tissue samples and during development is challenging. Human induced pluripotent stem cell (iPSC) technology holds great promise for assessing these effects across different differentiation contexts. Here, we use an efficient pooling strategy to differentiate 215 iPS cell lines towards a midbrain neural fate, including dopaminergic neurons, and profile over 1 million cells sampled across three differentiation timepoints using single cell RNA sequencing. We find that the proportion of neuronal cells produced by each cell line is highly reproducible over different experimental batches, and identify robust molecular markers in pluripotent cells that predict line-to-line differences in cell fate. We identify expression quantitative trait loci (eQTL) that manifest at different stages of neuronal development, and in response to oxidative stress, by exposing cells to rotenone. We find over one thousand eQTL that colocalise with a known risk locus for a neurological trait, nearly half of which are not found in GTEx. Our study illustrates how coupling single cell transcriptomics with long-term iPSC differentiation can profile mechanistic effects of human trait-associated genetic variants in otherwise inaccessible cell states. Competing Interest Statement D.J.G. and E.M. were employees of Genomics PLC and D.D.S. was an employee of GSK at the time the manuscript was submitted.
Two families with sibling recurrence of the 17q21.31 microdeletion syndrome due to low-grade mosaicism
The 17q21.31 microdeletion syndrome is characterised by intellectual disability, epilepsy, distinctive facial dysmorphism, and congenital anomalies. To date, all individuals reported with this syndrome have been simplex patients, resulting from de novo deletions. Here, we report sibling recurrence of the 17q21.31 microdeletion syndrome in two independent families. In both families, the mother was confirmed to be the parent-of-origin for the 17q21.31 deletion. Fluorescence in situ hybridisation analyses in buccal mucosa cells, of the mother of family 1, identified monosomy 17q21.31 in 4/50 nuclei (8%). In mother of family 2, the deletion was identified in 2/60 (3%) metaphase and in 3/100 (3%) interphase nuclei in peripheral lymphocytes, and in 7/100 (7%) interphase nuclei in buccal cells. A common 17q21.31 inversion polymorphism predisposes to non-allelic homologous recombination and hereby to the 17q21.31 microdeletion syndrome. On the basis of the 17q21.31 inversion status of the parents, we calculated that the probability of the second deletion occurring by chance alone was 1/14,438 and 1/4812, respectively. If the inversion status of the parents of a child with the 17q21.31 microdeletion syndrome is unknown, the overall risk of a second child with the 17q21.31 microdeletion is 1/9461. We conclude that the presence of low-level maternal somatic-gonadal mosaicism is associated with the microdeletion recurrence in these families. This suggests that the recurrence risk for parents with a child with a 17q21.31 microdeletion for future pregnancies is higher than by chance alone and testing for mosaicism in the parents might be considered as a helpful tool in the genetic counselling.