Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
37 result(s) for "Stolz, Samuel"
Sort by:
Weyl spin-momentum locking in a chiral topological semimetal
Spin-orbit coupling in noncentrosymmetric crystals leads to spin-momentum locking – a directional relationship between an electron’s spin angular momentum and its linear momentum. Isotropic orthogonal Rashba spin-momentum locking has been studied for decades, while its counterpart, isotropic parallel Weyl spin-momentum locking has remained elusive in experiments. Theory predicts that Weyl spin-momentum locking can only be realized in structurally chiral cubic crystals in the vicinity of Kramers-Weyl or multifold fermions. Here, we use spin- and angle-resolved photoemission spectroscopy to evidence Weyl spin-momentum locking of multifold fermions in the chiral topological semimetal PtGa. We find that the electron spin of the Fermi arc surface states is orthogonal to their Fermi surface contour for momenta close to the projection of the bulk multifold fermion at the Γ point, which is consistent with Weyl spin-momentum locking of the latter. The direct measurement of the bulk spin texture of the multifold fermion at the R point also displays Weyl spin-momentum locking. The discovery of Weyl spin-momentum locking may lead to energy-efficient memory devices and Josephson diodes based on chiral topological semimetals. Spin-momentum locking is a fundamental property of condensed matter systems. Here, the authors evidence parallel Weyl spin-momentum locking of multifold fermions in the chiral topological semimetal PtGa.
Handedness-dependent quasiparticle interference in the two enantiomers of the topological chiral semimetal PdGa
It has recently been proposed that combining chirality with topological band theory results in a totally new class of fermions. Understanding how these unconventional quasiparticles propagate and interact remains largely unexplored so far. Here, we use scanning tunneling microscopy to visualize the electronic properties of the prototypical chiral topological semimetal PdGa. We reveal chiral quantum interference patterns of opposite spiraling directions for the two PdGa enantiomers, a direct manifestation of the change of sign of their Chern number. Additionally, we demonstrate that PdGa remains topologically non-trivial over a large energy range, experimentally detecting Fermi arcs in an energy window of more than 1.6 eV that is symmetrically centered around the Fermi level. These results are a consequence of the deep connection between chirality in real and reciprocal space in this class of materials, and, thereby, establish PdGa as an ideal topological chiral semimetal. Direct visualization of chiral effects in topological chiral semimetals remains elusive. Here, Sessi et al . demonstrate that quasiparticle scattering at impurities in the two enantiomers of PdGa gives rise to handedness dependent quantum interference patterns.
Asymmetric Molecular Adsorption and Regioselective Bond Cleavage on Chiral PdGa Crystals
Homogenous enantioselective catalysis is nowadays the cornerstone in the manufacturing of enantiopure substances, but its technological implementation suffers from well‐known impediments like the lack of endurable catalysts exhibiting long‐term stability. The catalytically active intermetallic compound Palladium‐Gallium (PdGa), conserving innate bulk chirality on its surfaces, represent a promising system to study asymmetric chemical reactions by heterogeneous catalysis, with prospective relevance for industrial processes. Here, this work investigates the adsorption of 10,10′‐dibromo‐9,9′‐bianthracene (DBBA) on the PdGa:A(1¯1¯1¯ $\\bar{1}\\bar{1}\\bar{1}$ ) Pd3‐terminated surface by means of scanning tunneling microscopy (STM) and spectroscopy (STS). A highly enantioselective adsorption of the molecule evolving into a near 100% enantiomeric excess below room temperature is observed. This exceptionally high enantiomeric excess is attributed to temperature activated conversion of the S to the R chiral conformer. Tip‐induced bond cleavage of the R conformer shows a very high regioselectivity of the DBBA debromination. The experimental results are interpreted by density functional theory atomistic simulations. This work extends the knowledge of chirality transfer onto the enantioselective adsorption of non‐planar molecules and manifests the ensemble effect of PdGa surfaces resulting in robust regioselective debromination. The smell of D‐limonene (left‐handed) and L‐limonene (right‐handed) is a famous example how chirality impacts physiological function. The former smells of oranges whereas the latter of turpentine, highlighting the importance of chiral selectivity. they have investigated highly chiral selective adsorption and halogen ion of 10,10′‐dibromo‐9,9′‐bianthracene molecules on the surface of the chiral intermetallic compound Palladium‐Gallium by Scanning Tunneling Microscopy.
Layer-dependent Schottky contact at van der Waals interfaces: V-doped WSe2 on graphene
Contacting two-dimensional (2D) semiconductors with van der Waals semimetals significantly reduces the contact resistance and Fermi level pinning due to defect-free interfaces. However, depending on the band alignment, a Schottky barrier remains. Here we study the evolution of the valence and conduction band edges in pristine and heavily vanadium (0.44%), i.e., p -type, doped epitaxial WSe 2 on quasi-freestanding graphene (QFEG) on silicon carbide as a function of thickness. We find that with increasing number of layers the Fermi level of the doped WSe 2 gets pinned at the highest dopant level for three or more monolayers. This implies a charge depletion region of about 1.6 nm. Consequently, V dopants in the first and second WSe 2 layer on QFEG/SiC are ionized (negatively charged) whereas they are charge neutral beyond the second layer.
Asymmetric azide-alkyne Huisgen cycloaddition on chiral metal surfaces
Achieving fundamental understanding of enantioselective heterogeneous synthesis is marred by the permanent presence of multitudinous arrangements of catalytically active sites in real catalysts. In this study, we address this issue by using structurally comparatively simple, well-defined, and chiral intermetallic PdGa{111} surfaces as catalytic substrates. We demonstrate the impact of chirality transfer and ensemble effect for the thermally activated azide-alkyne Huisgen cycloaddition between 3-(4-azidophenyl)propionic acid and 9-ethynylphenanthrene on these threefold symmetric intermetallic surfaces under ultrahigh vacuum conditions. Specifically, we encounter a dominating ensemble effect for this reaction as on the Pd 3 -terminated PdGa{111} surfaces no stable heterocoupled structures are created, while on the Pd 1 -terminated PdGa{111} surfaces, the cycloaddition proceeds regioselectively. Moreover, we observe chirality transfer from the substrate to the reaction products, as they are formed enantioselectively on the Pd 1 -terminated PdGa{111} surfaces. Our results evidence a determinant ensemble effect and the immense potential of PdGa as asymmetric heterogeneous catalyst. Mechanistic insight into enantioselective reactions at intrinsically chiral surfaces can be challenging to obtain. Here the catalytic activity of Pd 1 - and Pd 3 -terminated PdGa{111} surfaces is shown to differ substantially, with Pd 1 -terminated surfaces promoting on-surface azide– alkyne cycloadditions enantioand regioselectively.
Molecular motor crossing the frontier of classical to quantum tunneling motion
The reliability by which molecular motor proteins convert undirected energy input into directed motion or transport has inspired the design of innumerable artificial molecular motors. We have realized and investigated an artificial molecular motor applying scanning tunneling microscopy (STM), which consists of a single acetylene (C₂H₂) rotor anchored to a chiral atomic cluster provided by a PdGa(111) surface that acts as a stator. By breaking spatial inversion symmetry, the stator defines the unique sense of rotation. While thermally activated motion is nondirected, inelastic electron tunneling triggers rotations, where the degree of directionality depends on the magnitude of the STM bias voltage. Below 17 K and 30-mV bias voltage, a constant rotation frequency is observedwhich bears the fundamental characteristics of quantum tunneling. The concomitantly high directionality, exceeding 97%, implicates the combination of quantum and nonequilibrium processes in this regime, being the hallmark of macroscopic quantum tunneling. The acetylene on PdGa(111) motor therefore pushes molecular machines to their extreme limits, not just in terms of size, but also regarding structural precision, degree of directionality, and cross-over from classical motion to quantum tunneling. This ultrasmall motor thus opens the possibility to investigate in operando effects and origins of energy dissipation during tunneling events, and, ultimately, energy harvesting at the atomic scales.
Controllable orbital angular momentum monopoles in chiral topological semimetals
The emerging field of orbitronics aims to generate and control orbital angular momentum for information processing. Chiral crystals are promising orbitronic materials because they have been predicted to host monopole-like orbital textures, where the orbital angular momentum aligns isotropically with the electron’s crystal momentum. However, such monopoles have not yet been directly observed in chiral crystals. Here, we use circular dichroism in angle-resolved photoelectron spectroscopy to image orbital angular momentum monopoles in the chiral topological semimetals PtGa and PdGa. The spectra show a robust polar texture that rotates around the monopole as a function of photon energy. This is a direct consequence of the underlying magnetic orbital texture and can be understood from the interference of local atomic contributions. Moreover, we also demonstrate that the polarity of the monopoles can be controlled through the structural handedness of the host crystal by imaging orbital angular moment monopoles and antimonopoles in the two enantiomers of PdGa, respectively. Our results highlight the potential of chiral crystals for orbitronic device applications, and our methodology could enable the discovery of even more complicated nodal orbital angular momentum textures that could be exploited for orbitronics. Chiral topological materials have been predicted to host orbital angular momentum monopoles, which can be useful for orbitronics applications. Now such monopoles have been imaged in chiral materials.
Controllable p-type Doping of 2D WSe2 via Vanadium Substitution
Scalable substitutional doping of two-dimensional (2D) transition metal dichalcogenides (TMDCs) is a prerequisite to developing next-generation logic and memory devices based on 2D materials. To date, doping efforts are still nascent. Here, we report scalable growth and vanadium (V) doping of 2D WSe2 at front-end-of-line (FEOL) and back-end-of-line (BEOL) compatible temperatures of 800 {\\deg}C and 400 {\\deg}C, respectively. A combination of experimental and theoretical studies confirm that vanadium atoms substitutionally replace tungsten in WSe2, which results in p-type doping via the introduction of discrete defect levels that lie close to the valence band maxima. The p-type nature of the V dopants is further verified by constructed field-effect transistors, where hole conduction becomes dominant with increasing vanadium concentration. Hence, our study presents a method to precisely control the density of intentionally introduced impurities, which is indispensable in the production of electronic-grade wafer-scale extrinsic 2D semiconductors.
Parallel spin-momentum locking in a chiral topological semimetal
Spin-momentum locking in solids describes a directional relationship between the electron's spin angular momentum and its linear momentum over the entire Fermi surface. While orthogonal spin-momentum locking, such as Rashba spin-orbit coupling, has been studied for decades and inspired a vast number of applications, its natural counterpart, the purely parallel spin-momentum locking, has remained elusive in experiments. Recently, chiral topological semimetals that host single- and multifold band crossings have been predicted to realize such parallel locking. Here, we use spin- and angle-resolved photoelectron spectroscopy to probe spin-momentum locking of a multifold fermion in the chiral topological semimetal PtGa via the spin-texture of its topological Fermi-arc surface states. We find that the electron spin of the Fermi-arcs points orthogonal to their Fermi surface contour for momenta close to the projection of the bulk multifold fermion, which is consistent with parallel spin-momentum locking of the latter. We anticipate that our discovery of parallel spin-momentum locking of multifold fermions will lead to the integration of chiral topological semimetals in novel spintronic devices, and the search for spin-dependent superconducting and magnetic instabilities in these materials.
Growth optimization and device integration of narrow-bandgap graphene nanoribbons
The electronic, optical and magnetic properties of graphene nanoribbons (GNRs) can be engineered by controlling their edge structure and width with atomic precision through bottom-up fabrication based on molecular precursors. This approach offers a unique platform for all-carbon electronic devices but requires careful optimization of the growth conditions to match structural requirements for successful device integration, with GNR length being the most critical parameter. In this work, we study the growth, characterization, and device integration of 5-atom wide armchair GNRs (5-AGNRs), which are expected to have an optimal band gap as active material in switching devices. 5-AGNRs are obtained via on-surface synthesis under ultra-high vacuum conditions from Br- and I-substituted precursors. We show that the use of I-substituted precursors and the optimization of the initial precursor coverage quintupled the average 5-AGNR length. This significant length increase allowed us to integrate 5-AGNRs into devices and to realize the first field-effect transistor based on narrow bandgap AGNRs that shows switching behavior at room temperature. Our study highlights that optimized growth protocols can successfully bridge between the sub-nanometer scale, where atomic precision is needed to control the electronic properties, and the scale of tens of nanometers relevant for successful device integration of GNRs.