Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
509 result(s) for "Sun, Yanxia"
Sort by:
A machine learning based credit card fraud detection using the GA algorithm for feature selection
The recent advances of e-commerce and e-payment systems have sparked an increase in financial fraud cases such as credit card fraud. It is therefore crucial to implement mechanisms that can detect the credit card fraud. Features of credit card frauds play important role when machine learning is used for credit card fraud detection, and they must be chosen properly. This paper proposes a machine learning (ML) based credit card fraud detection engine using the genetic algorithm (GA) for feature selection. After the optimized features are chosen, the proposed detection engine uses the following ML classifiers: Decision Tree (DT), Random Forest (RF), Logistic Regression (LR), Artificial Neural Network (ANN), and Naive Bayes (NB). To validate the performance, the proposed credit card fraud detection engine is evaluated using a dataset generated from European cardholders. The result demonstrated that our proposed approach outperforms existing systems.
A Machine Learning Method with Hybrid Feature Selection for Improved Credit Card Fraud Detection
With the rapid developments in electronic commerce and digital payment technologies, credit card transactions have increased significantly. Machine learning (ML) has been vital in analyzing customer data to detect and prevent fraud. However, the presence of redundant and irrelevant features in most real-world credit card data degrades the performance of ML classifiers. This study proposes a hybrid feature-selection technique consisting of filter and wrapper feature-selection steps to ensure that only the most relevant features are used for machine learning. The proposed method uses the information gain (IG) technique to rank the features, and the top-ranked features are fed to a genetic algorithm (GA) wrapper, which uses the extreme learning machine (ELM) as the learning algorithm. Meanwhile, the proposed GA wrapper is optimized for imbalanced classification using the geometric mean (G-mean) as the fitness function instead of the conventional accuracy metric. The proposed approach achieved a sensitivity and specificity of 0.997 and 0.994, respectively, outperforming other baseline techniques and methods in the recent literature.
Power system optimization approach to mitigate voltage instability issues: A review
Voltage instability is a major challenge facing power system (PS) that has affected some organizations in achieving their desired goals. Therefore, voltage instability is the incapability of the PS to maintain the voltage standard under no disturbance and after subjecting to disruption. This paper describes the voltage instability phenomena; voltage stability indices include Line Stability Index ( $${L_P}$$ L P ), Line voltage stability index, Fast Voltage Stability Index (FVSI), line stability factor (LQP), Bus voltage collapse prediction index (BVCPI), L index, voltage stability index (VCP-1), and so on. This review focuses on some stability indices that could identify the weak bus in the electrical PS network. The application of particle swarm optimization (PSO) to minimize losses that cause voltage instability is discussed. It started a detailed understanding of the power blackouts and the detrimental effects on the global economy. This was followed by a thorough understanding of the voltage instability/stability phenomenon, classification in power systems, and the corresponding formulations. The study presents an overview of voltage assessment techniques prior to applying PSO in discrete and multi-objective optimization and the corresponding advantages over others. These are followed by the progress and advances in voltage stability using PSO involving single and hybrid optimization methods. Lastly, to bridge the research gaps, the present study highlighted challenges and future prospects to foster further advancement in the field.
Diminishing Active Power Loss and Improving Voltage Profile Using an Improved Pathfinder Algorithm Based on Inertia Weight
Part of the widely discussed problem in electrical power systems is the optimal reactive power dispatch (ORPD) due to its reliability and economical operation of electrical power systems. The ORPD is a complex and nonlinear optimization problem. The pathfinder algorithm (PFA) is a newly developed algorithm that inspires the group movement of prey with a leader called a pathfinder when hunting for food. The inertia weight is added to the PFA and is called an improved pathfinder algorithm (IPFA) to support the proper random work of the swarm to avoid the decrease in searchability of the PFA. The IPFA was proposed in this work to diminish the active power loss while improving the voltage profile. The IPFA was validated on the IEEE 30 and 118 bus systems along with particle swarm optimization (PSO) and the teaching–learning-based optimizer (TLBO). The proposed IPFA provides the best result as the losses of the IEEE 30 and 118 test systems were reduced to 16.035 and 115.048 MW from the initial base of 17.89 and 132.86 MW, respectively. The losses of PSO and the TLBO were 16.1568 and 16.1607 MW for the IEEE 30 bus system, respectively, while for the IEEE 118 bus system, the PSO provided 117.9129 MW and the TLBO provided 118.0524 MW. The two test systems’ reduction percentages (%) were 10.37% and 13.41%, respectively. The results were compared with those of other algorithms in the literature, and the IPFA provided a superior result, thereby suggesting the superiority of IPFA methods in diminishing the power loss and improving the system’s voltage profile.
Application of improved Jellyfish search algorithm for 9-parameters cell extraction and GMPPT in PV systems
Optimization algorithms are essential tools used to address real-world problems through minimization or maximization processes. In the context of photovoltaic (PV) systems, various optimization algorithms have been employed to extract solar cell parameters using minimization techniques, and to identify the maximum power point (MPP) using maximization approaches. However, under partial shading conditions or during rapidly changing irradiance, many of these algorithms tend to get trapped in local minima, failing to locate the global maximum power point (GMPPT). This shortcoming leads to significant energy losses from PV cells. Similarly, the extraction of solar cell parameters is often compromised by the random search behavior and inadequate exploration and exploitation capabilities of many existing algorithms. The Jellyfish Search Optimization (JSO) algorithm is a recent, parameter-free method developed to tackle a wide range of optimization problems. Despite its innovative design, JSO is prone to premature convergence and exhibits a longer convergence time. To address these limitations, this paper proposes a modified version of the JSO algorithm, which integrates the state-of-the-art features of JSO with the Lévy flight characteristic from the cuckoo search algorithm. This combination aims to achieve a better balance between exploration and exploitation. To validate the effectiveness of the proposed Improved Jellyfish Search Optimization (IJSO) algorithm in PV systems, extensive experiments were conducted. These experiments included benchmarking with complex test functions, extracting cell parameters using various solar cell models, and maximizing energy output from PV systems under different environmental conditions. The results demonstrate that the proposed IJSO algorithm effectively enhances parameter extraction and global maximum power point tracking, making it a promising solution for optimizing energy extraction from PV cells in dynamic conditions.
Dissecting esophageal squamous-cell carcinoma ecosystem by single-cell transcriptomic analysis
Esophageal squamous-cell carcinoma (ESCC), one of the most prevalent and lethal malignant disease, has a complex but unknown tumor ecosystem. Here, we investigate the composition of ESCC tumors based on 208,659 single-cell transcriptomes derived from 60 individuals. We identify 8 common expression programs from malignant epithelial cells and discover 42 cell types, including 26 immune cell and 16 nonimmune stromal cell subtypes in the tumor microenvironment (TME), and analyse the interactions between cancer cells and other cells and the interactions among different cell types in the TME. Moreover, we link the cancer cell transcriptomes to the somatic mutations and identify several markers significantly associated with patients’ survival, which may be relevant to precision care of ESCC patients. These results reveal the immunosuppressive status in the ESCC TME and further our understanding of ESCC. Esophageal squamous-cell carcinomas (ESCC) have poor prognosis, and detailed molecular profiles are necessary to identify prognostic markers. Here the authors analyse 60 ESCC patient samples using scRNA-seq, TCR-seq and genomics; they find mucosal immunity markers associated with survival and immunosuppressive microenvironments.
Enhanced adaptive neuro-fuzzy inference system using genetic algorithm: a case study in predicting electricity consumption
Energy forecasting is crucial for efficient energy management and planning for future energy needs. Previous studies have employed hybrid modeling techniques, but insufficient attention has been given to hyper-parameter tuning and parameter selection. In this study, we present a hybrid model, which combines fuzzy c-means clustered adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm (GA), named GA–ANFIS–FCM, to model electricity consumption in Lagos districts, Nigeria. The model is simulated using the algorithms’ control settings, and the best model is identified after assessing their performance using renowned statistical indicators. To further narrow down the best viable model, the impact of the core parameter of the GA on the GA–ANFIS–FCM optimal model is examined by varying the crossover percentage in the range of 0.2–0.6. Firstly, the results reveal the better performance of the hybridized ANFIS model than the standalone ANFIS model. Additionally, the best model is obtained with the GA–ANFIS–FCM model with four clusters at a crossover percentage of 0.4, with mean absolute percentage error (MAPE), mean absolute error (MAE), coefficient of root mean square error (CVRMSE), root mean square error (RMSE) values of 7.6345 (signifying a forecast accuracy of 92.4%), 706.0547, 9.4913, and 918.6518 during the testing phase, respectively. The study demonstrates the potential of the proposed model as a reliable tool for energy forecasting. Article highlights Integrating evolutionary algorithms with ANFIS can boost its performance, resulting in a more accurate and reliable model. Achieving accuracy with fuzzy c-means-based models, hybrid or stand-alone, requires appropriate cluster quantity Determining the optimal crossover percentage for GA–ANFIS models is crucial to accuracy, requiring multiple experiments for the model.
Effect of perioperative goal-directed hemodynamic therapy on postoperative recovery following major abdominal surgery—a systematic review and meta-analysis of randomized controlled trials
Background Goal-directed hemodynamic therapy (GDHT) has been used in the clinical setting for years. However, the evidence for the beneficial effect of GDHT on postoperative recovery remains inconsistent. The aim of this systematic review and meta-analysis was to evaluate the effect of perioperative GDHT in comparison with conventional fluid therapy on postoperative recovery in adults undergoing major abdominal surgery. Methods Randomized controlled trials (RCTs) in which researchers evaluated the effect of perioperative use of GDHT on postoperative recovery in comparison with conventional fluid therapy following abdominal surgery in adults (i.e., >16 years) were considered. The effect sizes with 95% CIs were calculated. Results Forty-five eligible RCTs were included. Perioperative GDHT was associated with a significant reduction in short-term mortality (risk ratio [RR] 0.75, 95% CI 0.61–0.91, p  = 0.004, I 2  = 0), long-term mortality (RR 0.80, 95% CI 0.64–0.99, p  = 0.04, I 2  = 4%), and overall complication rates (RR 0.76, 95% CI 0.68–0.85, p  < 0.0001, I 2  = 38%). GDHT also facilitated gastrointestinal function recovery, as demonstrated by shortening the time to first flatus by 0.4 days (95% CI −0.72 to −0.08, p  = 0.01, I 2  = 74%) and the time to toleration of oral diet by 0.74 days (95% CI −1.44 to −0.03, p  < 0.0001, I 2  = 92%). Conclusions This systematic review of available evidence suggests that the use of perioperative GDHT may facilitate recovery in patients undergoing major abdominal surgery.
An Improved Particle Swarm Optimization and Adaptive Neuro-Fuzzy Inference System for Predicting the Energy Consumption of University Residence
Future energy planning relies on understanding how much energy is produced and consumed. In response, this study developed a multihybrid adaptive neuro-fuzzy inference system (ANFIS) for students’ residences, using the University of Johannesburg residence, South Africa as a case study. The model input variables are wind speed, temperature, and humidity, with the output being the equivalent energy consumption for the student housing. While the particle swarm optimization (PSO) technique is versatile and widely used, it falls short by exhibiting premature convergence. To address this problem, the velocity update equation of the original PSO algorithm is modified by incorporating a dynamic linear decreasing inertia weight, which improves the PSO algorithm’s convergence behaviour and aids both local and global search. Following that, the modified PSO (MPSO) is used to optimize the ANFIS parameters for the best model prediction. A comparative analysis is conducted between the MPSO, the original PSO, and six other hybrid models using a dataset division of 70% for training and 30% for testing. Performance evaluation was carried out using three well-known performance benchmarks: root mean square error (RMSE), mean absolute deviation (MAD), and coefficient of variation (RCoV). The experimental results show that the performance of the proposed MPSO-ANFIS outperformed other methods with the least values of the RMSE (1.8928 KWh), MAD (1.5051 KWh), and RCoV (0.1370), respectively. Furthermore, when compared to the PSO-ANFIS, the MPSO-ANFIS demonstrated improvements in RMSE, MAD, and RCoV with 1.58%, 2.11%, and 5.23%, respectively. Based on the results, it can be concluded that the MPSO-ANFIS provides better prediction accuracy which is vital for strategic energy planning.
Performance Evaluation of the Impact of Clustering Methods and Parameters on Adaptive Neuro-Fuzzy Inference System Models for Electricity Consumption Prediction during COVID-19
Increasing economic and population growth has led to a rise in electricity consumption. Consequently, electrical utility firms must have a proper energy management strategy in place to improve citizens’ quality of life and ensure an organization’s seamless operation, particularly amid unanticipated circumstances such as coronavirus disease (COVID-19). There is a growing interest in the application of artificial intelligence models to electricity prediction during the COVID-19 pandemic, but the impacts of clustering methods and parameter selection have not been explored. Consequently, this study investigates the impacts of clustering techniques and different significant parameters of the adaptive neuro-fuzzy inference systems (ANFIS) model for predicting electricity consumption during the COVID-19 pandemic using districts of Lagos, Nigeria as a case study. The energy prediction of the dataset was examined in relation to three clustering techniques: grid partitioning (GP), subtractive clustering (SC), fuzzy c-means (FCM), and other key parameters such as clustering radius (CR), input and output membership functions, and the number of clusters. Using renowned statistical metrics, the best sub-models for each clustering technique were selected. The outcome showed that the ANFIS-based FCM technique produced the best results with five clusters, with the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Variation (RCoV), Coefficient of Variation of the Root Mean Square Error (CVRMSE), and Mean Absolute Percentage Error (MAPE) being 1137.6024, 898.5070, 0.0586, 11.5727, and 9.3122, respectively. The FCM clustering technique is recommended for usage in ANFIS models that employ similar time series data due to its accuracy and speed.