Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
30
result(s) for
"Tang, Shuang-Yan"
Sort by:
Developing a highly efficient hydroxytyrosol whole-cell catalyst by de-bottlenecking rate-limiting steps
2020
Hydroxytyrosol is an antioxidant free radical scavenger that is biosynthesized from tyrosine. In metabolic engineering efforts, the use of the mouse tyrosine hydroxylase limits its production. Here, we design an efficient whole-cell catalyst of hydroxytyrosol in
Escherichia coli
by de-bottlenecking two rate-limiting enzymatic steps. First, we replace the mouse tyrosine hydroxylase by an engineered two-component flavin-dependent monooxygenase HpaBC of
E. coli
through structure-guided modeling and directed evolution. Next, we elucidate the structure of the
Corynebacterium glutamicum
VanR regulatory protein complexed with its inducer vanillic acid. By switching its induction specificity from vanillic acid to hydroxytyrosol, VanR is engineered into a hydroxytyrosol biosensor. Then, with this biosensor, we use in vivo-directed evolution to optimize the activity of tyramine oxidase (TYO), the second rate-limiting enzyme in hydroxytyrosol biosynthesis. The final strain reaches a 95% conversion rate of tyrosine. This study demonstrates the effectiveness of sequentially de-bottlenecking rate-limiting steps for whole-cell catalyst development.
Whole-cell catalyst-based hydroxytyrosol production is low. Here, the authors increase the efficiency of its production in
E. coli
by de-bottlenecking two enzymatic steps catalyzed by monooxygenase and tyramine oxidase using structure-based enzyme redesign or in vivo-directed evolution with the aid of a newly developed biosensor.
Journal Article
Promiscuous enzymatic activity-aided multiple-pathway network design for metabolic flux rearrangement in hydroxytyrosol biosynthesis
2019
Genetic diversity is a result of evolution, enabling multiple ways for one particular physiological activity. Here, we introduce this strategy into bioengineering. We design two hydroxytyrosol biosynthetic pathways using tyrosine as substrate. We show that the synthetic capacity is significantly improved when two pathways work simultaneously comparing to each individual pathway. Next, we engineer flavin-dependent monooxygenase HpaBC for tyrosol hydroxylase, tyramine hydroxylase, and promiscuous hydroxylase active on both tyrosol and tyramine using directed divergent evolution strategy. Then, the mutant HpaBCs are employed to catalyze two missing steps in the hydroxytyrosol biosynthetic pathways designed above. Our results demonstrate that the promiscuous tyrosol/tyramine hydroxylase can minimize the cell metabolic burden induced by protein overexpression and allow the biosynthetic carbon flow to be divided between two pathways. Thus, the efficiency of the hydroxytyrosol biosynthesis is significantly improved by rearranging the metabolic flux among multiple pathways.
Metabolic engineering usually focuses on manipulating enzyme(s) within a single pathway. Here, the authors show that a promiscuous enzymatic activity-based multiple-pathway design can minimize cell metabolic burden and allow carbon flow rearrangement, leading to efficient hydroxytyrosol biosynthesis.
Journal Article
Engineering and application of LacI mutants with stringent expressions
2024
Optimal transcriptional regulatory circuits are expected to exhibit stringent control, maintaining silence in the absence of inducers while exhibiting a broad induction dynamic range upon the addition of effectors. In the Plac/LacI pair, the promoter of the lac operon in Escherichia coli is characterized by its leakiness, attributed to the moderate affinity of LacI for its operator target. In response to this limitation, the LacI regulatory protein underwent engineering to enhance its regulatory properties. The M7 mutant, carrying I79T and N246S mutations, resulted in the lac promoter displaying approximately 95% less leaky expression and a broader induction dynamic range compared to the wild‐type LacI. An in‐depth analysis of each mutation revealed distinct regulatory profiles. In contrast to the wild‐type LacI, the M7 mutant exhibited a tighter binding to the operator sequence, as evidenced by surface plasmon resonance studies. Leveraging the capabilities of the M7 mutant, a high‐value sugar biosensor was constructed. This biosensor facilitated the selection of mutant galactosidases with approximately a seven‐fold improvement in specific activity for transgalactosylation. Consequently, this advancement enabled enhanced biosynthesis of galacto‐oligosaccharides (GOS). Evolved mutant LacI displayed less leaky expression. Leveraging the mutant into a biosensor for high‐throughput screening of enzymes for biosynthesis of galacto‐oligosaccharides.
Journal Article
CRISPRi/dCpf1-mediated dynamic metabolic switch to enhance butenoic acid production in Escherichia coli
2020
Butenoic acid is a short-chain unsaturated fatty acid and important precursor for pharmaceutical and other applications. Heterologous thioesterases are able to convert a fatty acid biosynthesis intermediate in Escherichia coli to butenoic acid. In order to acquire high titer and yield of the product, dynamically switching the metabolic flux from fatty acid biosynthesis pathway to butenoic acid is critical after achieving enough cell mass of the host. A previous developed switch for butenoic acid fermentation is based on triclosan molecule as the FabI inhibitor in the fatty acid biosynthesis cycle. However, triclosan is toxic to human, which may limit its pharmaceutical application. Alternatively, we here purposed a nontoxic switch of carbon flux by harnessing recently developed CRISPR interference (CRISPRi) approach. In our work, we constructed a CRISPRi/dCpf1-mediated dynamic metabolic switch to separate the host growth and production phase via switching the expression of the fabI gene in fatty acid biosynthesis pathway. After optimizing the programmable targets, the CRISPRi-based switch boosted the titer of butenoic acid by 6-fold (1.41 g/L) in fed-batch fermentation. Our work supported that the CRISPRi/dCpf1 switch could replace triclosan-based switch as a nontoxic switch for butenoic acid production, and outcompeted the later switch in the biomass accumulation of the host cell. Moreover, the CRISPRi/dCpf1 system was integrated into the chromosome of the host to improve its genetic stability for long-term fermentation and other applications.Key Points• A programmable metabolic switch was developed to replace the toxic chemical switch to separate the growth phase and production phase of the butenoic acid.• The programmable CRISPRi/dCpf1 switch was efficiently and stably integrated into the host genome to increase their genetic stability during fermentation.• The optimized metabolic switch simultaneously increased the host biomass and butenoic acid titer, and solved the paradox of the competition between growth and production.
Journal Article
Development of a highly efficient and specific l-theanine synthase
by
Jian-Ming, Jin
,
Shuang-Yan, Tang
,
Yao, Jun
in
Adenosine diphosphate
,
Chemical synthesis
,
Cysteine
2020
γ-Glutamylcysteine synthetase (γ-GCS) from Escherichia coli, which catalyzes the formation of l-glutamylcysteine from l-glutamic acid and l-cysteine, was engineered into an l-theanine synthase using l-glutamic acid and ethylamine as substrates. A high-throughput screening method using a 96-well plate was developed to evaluate the l-theanine synthesis reaction. Both site-saturation mutagenesis and random mutagenesis were applied. After three rounds of directed evolution, 13B6, the best-performing mutant enzyme, exhibited 14.6- and 17.0-fold improvements in l-theanine production and catalytic efficiency for ethylamine, respectively, compared with the wild-type enzyme. In addition, the specific activity of 13B6 for the original substrate, l-cysteine, decreased to approximately 14.6% of that of the wild-type enzyme. Thus, the γ-GCS enzyme was successfully switched to a specific l-theanine synthase by directed evolution. Furthermore, an ATP-regeneration system was introduced based on polyphosphate kinases catalyzing the transfer of phosphates from polyphosphate to ADP, thus lowering the level of ATP consumption and the cost of l-theanine synthesis. The final l-theanine production by mutant 13B6 reached 30.4 ± 0.3 g/L in 2 h, with a conversion rate of 87.1%, which has great potential for industrial applications.
Journal Article
Engineering the effector specificity of regulatory proteins for the in vitro detection of biomarkers and pesticide residues
by
Chen, Wei
,
Tang, Shuang-Yan
,
Zhang, Xuanxuan
in
Allosteric properties
,
Analysis
,
Bacterial Proteins - genetics
2019
Transcriptional regulatory proteins (TRPs)-based whole-cell biosensors are promising owing to their specificity and sensitivity, but their applications are currently limited. Herein, TRPs were adapted for the extracellular detection of a disease biomarker, uric acid, and a typical pesticide residue, carbaryl. A mutant regulatory protein that specifically recognizes carbaryl as its non-natural effector and activates transcription upon carbaryl binding was developed by engineering the regulatory protein TtgR from
Pseudomonas putida
. The TtgR mutant responsive to carbaryl and a regulatory protein responsive to uric acid were used for in vitro detection, based on their allosteric binding of operator DNA and inducer molecules. Based on the quantitative polymerase chain reactions (qPCRs) output, the minimum detectable concentration was between 1 nM–1 μM and 1–10 nM for uric acid and carbaryl, respectively. Our results demonstrated that engineering the effector specificity of regulatory proteins is a potential technique for generating molecular recognition elements for not only in vivo but also in vitro applications.
Journal Article
Improving the thermoactivity and thermostability of pectate lyase from Bacillus pumilus for ramie degumming
by
Zhou, Cheng
,
Tang, Shuang-Yan
,
Gui, Xiwu
in
Amino Acid Sequence
,
Bacillus
,
Bacillus - enzymology
2015
Thermostable alkaline pectate lyases can be potentially used for enzymatically degumming ramie in an environmentally sustainable manner and as an alternative to the currently used chemical-based ramie degumming processes. To assess its potential applications, pectate lyase from Bacillus pumilus (ATCC 7061) was cloned and expressed in Escherichia coli. Evolutionary strategies were applied to generate efficient ramie degumming enzymes. Obtained from site-saturation mutagenesis and random mutagenesis, the best performing mutant enzyme M3 exhibited a 3.4-fold higher specific activity on substrate polygalacturonic acid, compared with the wild-type enzyme. Furthermore, the half-life of inactivation at 50 °C for M3 mutant extended to over 13 h. In contrast, the wild-type enzyme was completely inactivated in less than 10 min under the same conditions. An upward shift in the optimal reaction temperature of M3 mutant, to 75 °C, was observed, which was 10 °C higher than that of the wild-type enzyme. Kinetic parameter data revealed that the catalysis efficiency of M3 mutant was higher than that of the wild-type enzyme. Ramie degumming with M3 mutant was also demonstrated to be more efficient than that with the wild-type enzyme. Collectively, our results suggest that the M3 mutant, with remarkable improvements in thermoactivity and thermostability, has potential applications for ramie degumming in the textile industry.
Journal Article
Biosensor-aided high-throughput screening of hyper-producing cells for malonyl-CoA-derived products
2017
Background
Malonyl-coenzyme A (CoA) is an important biosynthetic precursor in vivo. Although
Escherichia coli
is a useful organism for biosynthetic applications, its malonyl-CoA level is too low.
Results
To identify strains with the best potential for enhanced malonyl-CoA production, we developed a whole-cell biosensor for rapidly reporting intracellular malonyl-CoA concentrations. The biosensor was successfully applied as a high-throughput screening tool for identifying targets at a genome-wide scale that could be critical for improving the malonyl-CoA biosynthesis in vivo. The mutant strains selected synthesized significantly higher titers of the type III polyketide triacetic acid lactone (TAL), phloroglucinol, and free fatty acids compared to the wild-type strain, using malonyl-CoA as a precursor.
Conclusion
These results validated this novel whole-cell biosensor as a rapid and sensitive malonyl-CoA high-throughput screening tool. Further analysis of the mutant strains showed that the iron ion concentration is closely related to the intracellular malonyl-CoA biosynthesis.
Journal Article
Designing a highly efficient type III polyketide whole-cell catalyst with minimized byproduct formation
2024
Background
Polyketide synthases (PKSs) are classified into three types based on their enzyme structures. Among them, type III PKSs, catalyzing the iterative condensation of malonyl-coenzyme A (CoA) with a CoA-linked starter molecule, are important synthases of valuable natural products. However, low efficiency and byproducts formation often limit their applications in recombinant overproduction.
Results
Herein, a rapid growth selection system is designed based on the accumulation and derepression of toxic acyl-CoA starter molecule intermediate products, which could be potentially applicable to most type III polyketides biosynthesis. This approach is validated by engineering both chalcone synthases (CHS) and host cell genome, to improve naringenin productions in
Escherichia coli
. From directed evolution of key enzyme CHS, beneficial mutant with ~ threefold improvement in capability of naringenin biosynthesis was selected and characterized. From directed genome evolution, effect of thioesterases on CHS catalysis is first discovered, expanding our understanding of byproduct formation mechanism in type III PKSs. Taken together, a whole-cell catalyst producing 1082 mg L
−1
naringenin in flask with
E
value (evaluating product specificity) improved from 50.1% to 96.7% is obtained.
Conclusions
The growth selection system has greatly contributed to both enhanced activity and discovery of byproduct formation mechanism in CHS. This research provides new insights in the catalytic mechanisms of CHS and sheds light on engineering highly efficient heterologous bio-factories to produce naringenin, and potentially more high-value type III polyketides, with minimized byproducts formation.
Journal Article
Towards the construction of high-quality mutagenesis libraries
2018
ObjectivesTo improve the quality of mutagenesis libraries in directed evolution strategy.ResultsIn the process of library transformation, transformants which have been shown to take up more than one plasmid might constitute more than 20% of the constructed library, thereby extensively impairing the quality of the library. We propose a practical transformation method to prevent the occurrence of multiple-plasmid transformants while maintaining high transformation efficiency. A visual library model containing plasmids expressing different fluorescent proteins was used. Multiple-plasmid transformants can be reduced through optimizing plasmid DNA amount used for transformation based on the positive correlation between the occurrence frequency of multiple-plasmid transformants and the logarithmic ratio of plasmid molecules to competent cells.ConclusionsThis method provides a simple solution for a seemingly common but often neglected problem, and should be valuable for improving the quality of mutagenesis libraries to enhance the efficiency of directed evolution strategies.
Journal Article