Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
96 result(s) for "Tay, Andy"
Sort by:
Materials meet bioelectrical and -mechanical demands of the heart
By analyzing confocal images and quantifying expression levels of connexin 43, a protein that indicates whether cells are forming electrical gap junctions to allow cell–cell communications and have healthy rhythmic contractions, the research group found that cardiac cells preferentially grew and aligned much better on their piezoelectric scaffolds than on the 2D polystyrene plate (Figure 1). The use of human-induced pluripotent stem cell (iPSC)-derived cardiomyocytes [cardiac muscle cells] means that toxicity screens could be personalized to some genetic characteristics of patients in the future,” she says. [...]the Young’s modulus of the heart tissues can vary between 0.02 MPa and 0.50 MPa, depending on whether the heart is at the systole (contraction) or diastole (relaxed) phase.
Struggling to get started
As the world attempts to cope with the devastating impact of the COVID-19 pandemic, researchers about to start PhDs and postdocs face particular challenges.As the world attempts to cope with the devastating impact of the COVID-19 pandemic, researchers about to start PhDs and postdocs face particular challenges.
Engineering human immune organoids for translational immunology
Animal models have been extensively used as a gold standard in various biological research, including immunological studies. Despite high availability and ease of handling procedure, they inadequately represent complex interactions and unique cellular properties in humans due to inter-species genetic and microenvironmental differences which have resulted in clinical-stage failures. Organoid technology has gained enormous attention as they provide sophisticated insights about tissue architecture and functionality in miniaturized organs. In this review, we describe the use of organoid system to overcome limitations in animal-based investigations, such as physiological mismatch with humans, costly, time-consuming, and low throughput screening. Immune organoids are one of the specific advancements in organogenesis ex vivo, which can reflect human adaptive immunity with more physiologically relevant aspects. We discuss how immune organoids are established from patient-derived lymphoid tissues, as well as their characteristics and functional features to understand immune mechanisms and responses. Also, some bioengineering perspectives are considered for any potential progress of immuno-engineered organoids. [Display omitted] •This work summarized the development and progress of human immune organoid generation.•Immune organoid is useful as an in vitro modelling of human adaptive immune system.•Immune organoid readouts are necessary to investigate their physiological and morphological properties.•Challenges and bioengineering solutions to improve immune organoid research are discussed comprehensively.
Nine reasons we love our spooky, kooky model organisms
Researchers share their inspiration and tips for working with unusual plants and animals. Researchers share their inspiration and tips for working with unusual plants and animals. Credit: Ivo Jacobs A photo of Ivo Jacobs holding a raven
NINE REASONS WE LOVE THESE 'SPOOKY' ORGANISMS
Nature asked nine scientists what inspired them to study unorthodox animals and plants and what they want the world to know about their favourite organisms, and gave them the chance to correct misconceptions around the much-maligned reputations of these flora and fauna. 1. [...]share your resources with as many groups as possible. [...]actively promote and participate in activities in your organism's research community, including workshops and symposiums. Interestingly, a review of all documented cases of wolves attacking humans from 2002 to 2020 shows that, despite large increases in wolf numbers in human-dominated landscapes of Europe, there has not been an increase in attacks (see go.nature.com/4iuop).
Dynamic Stimulations with Bioengineered Extracellular Matrix‐Mimicking Hydrogels for Mechano Cell Reprogramming and Therapy
Cells interact with their surrounding environment through a combination of static and dynamic mechanical signals that vary over stimulus types, intensity, space, and time. Compared to static mechanical signals such as stiffness, porosity, and topography, the current understanding on the effects of dynamic mechanical stimulations on cells remains limited, attributing to a lack of access to devices, the complexity of experimental set‐up, and data interpretation. Yet, in the pursuit of emerging translational applications (e.g., cell manufacturing for clinical treatment), it is crucial to understand how cells respond to a variety of dynamic forces that are omnipresent in vivo so that they can be exploited to enhance manufacturing and therapeutic outcomes. With a rising appreciation of the extracellular matrix (ECM) as a key regulator of biofunctions, researchers have bioengineered a suite of ECM‐mimicking hydrogels, which can be fine‐tuned with spatiotemporal mechanical cues to model complex static and dynamic mechanical profiles. This review first discusses how mechanical stimuli may impact different cellular components and the various mechanobiology pathways involved. Then, how hydrogels can be designed to incorporate static and dynamic mechanical parameters to influence cell behaviors are described. The Scopus database is also used to analyze the relative strength in evidence, ranging from strong to weak, based on number of published literatures, associated citations, and treatment significance. Additionally, the impacts of static and dynamic mechanical stimulations on clinically relevant cell types including mesenchymal stem cells, fibroblasts, and immune cells, are evaluated. The aim is to draw attention to the paucity of studies on the effects of dynamic mechanical stimuli on cells, as well as to highlight the potential of using a cocktail of various types and intensities of mechanical stimulations to influence cell fates (similar to the concept of biochemical cocktail to direct cell fate). It is envisioned that this progress report will inspire more exciting translational development of mechanoresponsive hydrogels for biomedical applications. Cells communicate with their surroundings through both static and dynamic mechanical signals, which vary over stimulus type, intensity, location, and duration. Current knowledge on dynamic mechanical stimulations is limited compared to static ones. For this, researchers are now developing extracellular matrix‐mimicking biofunctional hydrogels that can replicate intricate static and dynamic mechanical profiles, enhancing the understanding of cellular complex interactions.
The open-science movement for sharing laboratory materials gains momentum
Many researchers support open science, but how can they translate this view into behaviours to boost sharing? Many researchers support open science, but how can they translate this view into behaviours to boost sharing? A lab technician wearing a face mask chooses bacterial colonies from an agar plate