Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
23 result(s) for "Teng, Guifa"
Sort by:
Recent advances in methods for in situ root phenotyping
Roots assist plants in absorbing water and nutrients from soil. Thus, they are vital to the survival of nearly all land plants, considering that plants cannot move to seek optimal environmental conditions. Crop species with optimal root system are essential for future food security and key to improving agricultural productivity and sustainability. Root systems can be improved and bred to acquire soil resources efficiently and effectively. This can also reduce adverse environmental impacts by decreasing the need for fertilization and fresh water. Therefore, there is a need to improve and breed crop cultivars with favorable root system. However, the lack of high-throughput root phenotyping tools for characterizing root traits in situ is a barrier to breeding for root system improvement. In recent years, many breakthroughs in the measurement and analysis of roots in a root system have been made. Here, we describe the major advances in root image acquisition and analysis technologies and summarize the advantages and disadvantages of each method. Furthermore, we look forward to the future development direction and trend of root phenotyping methods. This review aims to aid researchers in choosing a more appropriate method for improving the root system.
Droplet Deposition Distribution Prediction Method for a Six-Rotor Plant Protection UAV Based on Inverse Distance Weighting
The aim of this work is to establish a method for real-time calculating droplet deposition distribution of a six-rotor plant protection unmanned aerial vehicle (UAV). The numerical simulation of the airflow field was carried out using computational fluid dynamics (CFD). The airflow field distribution was obtained under seven flight speeds, six flight heights, and seven crosswind speeds. The relative error verified the accuracy of the numerical model within 12% between the spatial point wind speed test and the simulated value. The numerical simulation results showed that with the improvement of the UAV flight speed and the crosswind, the relative airflow produces a vortex in the downwash wind field below the UAV and reduces the stability of the downwash wind field. The discrete droplet phase was introduced in the flow field. The ground regions were divided using a small grid of 0.5 m × 0.5 m, and statistical calculations of droplet deposition rates within each grid yielded the distribution of droplets under 294 different parameter combinations. The statistical results show that the relative airflow and crosswind caused droplet convolution, and droplet drift was increased. In the actual operation of the UAV, the flight speed should be well controlled under the condition of low environmental wind to reduce the droplet drift rate and improve the utilization rate of pesticides. Based on the distribution under 294 different parameter combinations, one droplet deposition prediction method was established using inverse distance weighting (IDW). The proposed method lays a foundation for the cumulative calculation of droplet deposition distribution during continuous operation of plant protection UAV. It provides a basis for objectively evaluating the operational quality of plant protection UAVs and optimizing the setting of operation parameters.
Precision Seeding Compensation and Positioning Based on Multisensors
The current multi-row planter always leads to uneven seeding spacing between rows while seeding in curve paths, which causes uneven growth, a cost increase of production and management, and reduced yield. With the development of smart farming technology, a curve seeding compensation and precise positioning model is proposed in the paper to calculate the real-time speed and position of each seeding unit based on the information from multisensors, such as GNSS and IMU, and to predict the next seeding position to achieve uniform seeding on the curve and improve the unit yield of crops. MATLAB Simulink simulation experiments show that the seeding pass rate of the model is 99.97% when the positioning accuracy is ±0.01 m and the traction speed is 1 m/s, and the seeding pass rate of the five-row seeder is as high as 99.81% when the traction speed is 3 m/s, which verifies the effectiveness and practicality of the model.
Corn Leaf Spot Disease Recognition Based on Improved YOLOv8
Leaf spot disease is an extremely common disease in the growth process of maize in Northern China and its degree of harm is quite significant. Therefore, the rapid and accurate identification of maize leaf spot disease is crucial for reducing economic losses in maize. In complex field environments, traditional identification methods are susceptible to subjective interference and cannot quickly and accurately identify leaf spot disease through color or shape features. We present an advanced disease identification method utilizing YOLOv8. This method utilizes actual field images of diseased corn leaves to construct a dataset and accurately labels the diseased leaves in these images, thereby achieving rapid and accurate identification of target diseases in complex field environments. We have improved the model based on YOLOv8 by adding Slim-neck modules and GAM attention modules and introducing them to enhance the model’s ability to identify maize leaf spot disease. The enhanced YOLOv8 model achieved a precision (P) of 95.18%, a recall (R) of 89.11%, an average recognition accuracy (mAP50) of 94.65%, and an mAP50-95 of 71.62%, respectively. Compared to the original YOLOv8 model, the enhanced model showcased enhancements of 3.79%, 4.65%, 3.56%, and 7.3% in precision (P), recall (R), average recognition accuracy (mAP50), and mAP50-95, respectively. The model can effectively identify leaf spot disease and accurately calibrate its location. Under the same experimental conditions, we compared the improved model with the YOLOv3, YOLOv5, YOLOv6, Faster R-CNN, and SSD models. The results show that the improved model not only enhances performance, but also reduces parameter complexity and simplifies the network structure. The results indicated that the improved model enhanced performance, while reducing experimental time. Hence, the enhanced method proposed in this study, based on YOLOv8, exhibits the capability to identify maize leaf spot disease in intricate field environments, offering robust technical support for agricultural production.
A Visual Intelligent Approach to Recognize Corn Row and Spacing for Precise Spraying
Precision spraying is a crucial goal for modern agriculture to achieve water and fertilizer conservation, reduced pesticide use, high yield, and green and sustainable development. This relies on the accurate identification of crop positions, high-precision path planning, and the positioning and control of intelligent agricultural machinery. For the precision production of corn, this paper proposes a new row detection method based on histogram peak detection and sliding window search, avoiding the issues of deep learning methods that are not conducive to lightweight deployment and large-scale promotion. Firstly, green channel segmentation and morphological operations are performed on high-resolution drone images to extract regions of interest (ROIs). Then, the ROIs are converted to a top-view image using perspective transformation, and a histogram analysis is performed using the find_peaks function to detect multiple peaks corresponding to row positions. Furthermore, a sliding window centered around the peak is constructed to search for complete single-row crop pixels in the vertical direction. Finally, the least squares method is used to fit the row curve, estimating the average row spacing (RowGap) and plant spacing (PlantGap) separately. The experimental results show that the accuracy of row detection reaches 93.8% ± 2.1% (n = 60), with a recall rate of 91.5% ± 1.8% and an F1 score of 0.925 ± 0.018. Under different growth stages, row numbers (6–8 rows), and weed interference conditions, the average row spacing measurement error is better than ±2.5 cm, and the plant spacing error is less than ±3.0 cm. Through field verification, this method reduces pesticide use by 23.6% and water consumption by 21.4% compared to traditional uniform spraying, providing important parameter support for field precision planting quality assessment and the dynamic monitoring of planting density, achieving variable irrigation and fertilization and water resource conservation.
Wheat Head Detection in Field Environments Based on an Improved YOLOv11 Model
Precise wheat head detection is essential for plant counting and yield estimation in precision agriculture. To tackle the difficulties arising from densely packed wheat heads with diverse scales and intricate occlusions in real-world field conditions, this research introduces YOLO v11n-GRN, an improved wheat head detection model founded on the streamlined YOLO v11n framework. The model optimizes performance through three key innovations: This study introduces a Global Edge Information Transfer (GEIT) module architecture that incorporates a Multi-Scale Edge Information Generator (MSEIG) to enhance the perception of wheat head contours through effective modeling of edge features and deep semantic fusion. Additionally, a C3k2_RFCAConv module is developed to improve spatial awareness and multi-scale feature representation by integrating receptive field augmentation and a coordinate attention mechanism. The utilization of the Normalized Gaussian Wasserstein Distance (NWD) as the localization loss function enhances regression stability for distant small targets. Experiments were, respectively, validated on the self-built multi-temporal wheat field image dataset and the GWHD2021 public dataset. Results showed that, while maintaining a lightweight design (3.6 MB, 10.3 GFLOPs), the YOLOv11n-GRN model achieved a precision, recall, and mAP@0.5 of 92.5%, 91.1%, and 95.7%, respectively, on the self-built dataset, and 91.6%, 89.7%, and 94.4%, respectively, on the GWHD2021 dataset. This fully demonstrates that the improvements can effectively enhance the model’s comprehensive detection performance for wheat ear targets in complex backgrounds. Meanwhile, this study offers an effective technical approach for wheat head detection and yield estimation in challenging field conditions, showcasing promising practical implications.
A Low-Altitude Remote Sensing Inspection Method on Rural Living Environments Based on a Modified YOLOv5s-ViT
The governance of rural living environments is one of the important tasks in the implementation of a rural revitalization strategy. At present, the illegal behaviors of random construction and random storage in public spaces have seriously affected the effectiveness of the governance of rural living environments. The current supervision on such problems mainly relies on manual inspection. Due to the large number and wide distribution of rural areas to be inspected, this method is limited by obvious disadvantages, such as low detection efficiency, long-time spending, and huge consumption of human resources, so it is difficult to meet the requirements of efficient and accurate inspection. In response to the difficulties encountered, a low-altitude remote sensing inspection method on rural living environments was proposed based on a modified YOLOv5s-ViT (YOLOv5s-Vision Transformer) in this paper. First, the BottleNeck structure was modified to enhance the multi-scale feature capture capability of the model. Then, the SimAM attention mechanism module was embedded to intensify the model’s attention to key features without increasing the number of parameters. Finally, the Vision Transformer component was incorporated to improve the model’s ability to perceive global features in the image. The testing results of the established model showed that, compared with the original YOLOv5 network, the Precision, Recall, and mAP of the modified YOLOv5s-ViT model improved by 2.2%, 11.5%, and 6.5%, respectively; the total number of parameters was reduced by 68.4%; and the computation volume was reduced by 83.3%. Relative to other mainstream detection models, YOLOv5s-ViT achieved a good balance between detection performance and model complexity. This study provides new ideas for improving the digital capability of the governance of rural living environments.
Low-Altitude Remote Sensing Opium Poppy Image Detection Based on Modified YOLOv3
Poppy is a special medicinal plant. Its cultivation requires legal approval and strict supervision. Unauthorized cultivation of opium poppy is forbidden. Low-altitude inspection of poppy illegal cultivation through unmanned aerial vehicle is featured with the advantages of time-saving and high efficiency. However, a large amount of inspection image data collected need to be manually screened and analyzed. This process not only consumes a lot of manpower and material resources, but is also subjected to omissions and errors. In response to such a problem, this paper proposed an inspection method by adding a larger-scale detection box on the basis of the original YOLOv3 algorithm to improve the accuracy of small target detection. Specifically, ResNeXt group convolution was utilized to reduce the number of model parameters, and an ASPP module was added before the small-scale detection box to improve the model’s ability to extract local features and obtain contextual information. The test results on a self-created dataset showed that: the mAP (mean average precision) indicator of the Global Multiscale-YOLOv3 model was 0.44% higher than that of the YOLOv3 (MobileNet) algorithm; the total number of parameters of the proposed model was only 13.75% of that of the original YOLOv3 model and 35.04% of that of the lightweight network YOLOv3 (MobileNet). Overall, the Global Multiscale-YOLOv3 model had a reduced number of parameters and increased recognition accuracy. It provides technical support for the rapid and accurate image processing in low-altitude remote sensing poppy inspection.
Identification Method of Mature Wheat Varieties Based on Improved DenseNet Model
Wheat is a crucial grain crop in China, yet differentiating different wheat varieties at the mature stage solely through visual observation remains challenging. However, the automatic identification of wheat varieties at the mature stage is very important for field management, planting area, and yield prediction. In order to achieve accurate and efficient recognition of wheat varieties planted in wheat fields, a recognition method based on an enhanced DenseNet network model is proposed in this study. The incorporation of SE and ECA attention mechanisms enhances the feature representation capability, leading to improved model performance and the development of the SECA-L-DenseNet model for wheat variety recognition. The experimental results show that the SECA-L-DenseNet model achieves a classification accuracy of 97.15% on the custom dataset, surpassing the original DenseNet model by 2.13%, which demonstrates a significant improvement. The model enables the accurate identification of wheat varieties in the field and can be integrated into applications for the automated identification of varieties, planting area estimation, and yield prediction in harvester equipment.
A Plant Disease Recognition Method Based on Fusion of Images and Graph Structure Text
The disease image recognition models based on deep learning have achieved relative success under limited and restricted conditions, but such models are generally subjected to the shortcoming of weak robustness. The model accuracy would decrease obviously when recognizing disease images with complex backgrounds under field conditions. Moreover, most of the models based on deep learning only involve characterization learning on visual information in the image form, while the expression of other modal information rather than the image form is often ignored. The present study targeted the main invasive diseases in tomato and cucumber as the research object. Firstly, in response to the problem of weak robustness, a feature decomposition and recombination method was proposed to allow the model to learn image features at different granularities so as to accurately recognize different test images. Secondly, by extracting the disease feature words from the disease text description information composed of continuous vectors and recombining them into the disease graph structure text, the graph convolutional neural network (GCN) was then applied for feature learning. Finally, a vegetable disease recognition model based on the fusion of images and graph structure text was constructed. The results show that the recognition accuracy, precision, sensitivity, and specificity of the proposed model were 97.62, 92.81, 98.54, and 93.57%, respectively. This study improved the model robustness to a certain extent, and provides ideas and references for the research on the fusion method of image information and graph structure information in disease recognition.