Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
15 result(s) for "Teruo Ohsawa"
Sort by:
Empirical Motion Compensation for Turbulence Intensity Measurement by Floating LiDARs
We propose an empirical motion compensation algorithm for a better turbulence intensity (TI) measurement by Floating LiDAR systems (FLSs) with a newly introduced motion parameter, the significant tilt angle θα,1/3, using four datasets from three different FLSs in Japan. The parameter was compared to other environmental parameters; it was confirmed to well represent various types of buoy motion. A sensitivity assessment was conducted for the error of the FLS’s standard deviation of wind speed to the buoy motion. The strong correlation obtained by the assessment suggests that the error of the FLS TI is dominated by the motion and that it is possible to offset the error by applying the relationship back to the measurement. The corrected TI shows good agreement with that of a reference fixed vertical LiDAR (VL). Moreover, the similarity of the relationships for the same type of VL mounted on different buoys implies that the correction may be VL-specific rather than FLS-specific, and, therefore, universal regardless of the FLS type. The successful validation suggests that the correction based on θα,1/3 can be applied not only to the future campaign but also to those performed in the past to revitalize numerous existing FLS datasets.
Estimation of Wind Conditions in the Offshore Direction Using Multiple Numerical Models and In Situ Observations
This study aims to estimate nearshore wind conditions using multiple numerical models and evaluate their accuracy at heights relevant to offshore wind turbines. An intensive observation campaign was conducted from December 2021 to February 2022 at Mutsu Ogawara Port, Japan. The observed data were used to validate the accuracy of numerical models (mesoscale, computational fluid dynamics (CFD), and linear models) to estimate wind conditions and investigate thermal environments, including atmospheric stability. The results demonstrated that the accuracy of period-averaged wind speed estimation in the offshore direction improved significantly when using an offshore observation point as a reference, with biases within ±2.5% up to 5 km offshore for all models. However, the accuracy of vertical shear estimation varies widely among models, with several models overestimating vertical shear, particularly in the sea wind sector. The mesoscale model, which accounts for spatiotemporal variations in atmospheric stability, consistently achieves high estimation accuracy. In contrast, standalone CFD models, which typically assume neutral atmospheric stability, are difficult to estimate accurately. Nonetheless, incorporating specific atmospheric stability conditions into the CFD models significantly enhanced their accuracy. These findings underscore the importance of atmospheric stability when estimating offshore wind conditions, particularly in nearshore areas.
Validation of near‐shore wind measurements using a dual scanning light detection and ranging system
This paper reports results from a 2‐month validation campaign of near‐shore wind measurements taken by a dual scanning light detection and ranging (LiDAR) system at a coastal site in Japan. A meteorological mast and a vertical profiling LiDAR device were deployed at an offshore research station approximately 1.5 km from the coast. Offshore winds at heights of 66, 120, and 180 m above sea level were observed by the scanning LiDAR system. Comparisons with a sonic anemometer found that the radial velocities had a coefficient of determination of more than 0.99 without unreasonable bias. The accuracy of 10‐min mean wind speeds and directions was then evaluated. The 10‐min values from the dual scanning LiDAR system were accurate enough to satisfy the acceptance criteria used for floating LiDAR systems. In addition, the vertical velocity and direction profiles from the dual scanning LiDAR system were compared with those from a vertical profiling LiDAR device. The performance of turbulence intensity (TI) measurements was also evaluated. Although the TIs from the dual scanning LiDAR system were slightly lower than those from the sonic anemometer, they were equivalent to those from the cup anemometers. This investigation concluded that the near‐shore wind measurements using the dual scanning LiDAR system are beneficial for reducing near‐shore wind measurement costs, because the system can measure not only 10‐min wind speed and direction, but also parameters associated with assessing site‐specific conditions without installing offshore meteorological masts.
Mutsu 2020 Scanning LiDAR Experiment: Comparison of Dual and Single Scanning LiDAR Systems for Near‐Shore Wind Measurement
This paper reports the results of a validation experiment on dual and single scanning light detection and ranging (LiDAR) systems for near‐shore wind measurements. This experiment was conducted from November 2020 to August 2021 at the Mutsu Ogawara test site for offshore wind measurement in northern Japan. The accuracy of the wind speed and direction measured by dual and single scanning LiDAR systems (DSL and SSL, respectively) was investigated by comparing them with in situ observations by a 60‐m meteorological mast located approximately 1.5 km offshore. The accuracy of the SSL was found to be strongly influenced by the wind direction, whereas the 10‐min wind speeds and directions obtained by the DSL exhibited good agreement with the meteorological mast observations for all wind directions. In addition, a comparison of the turbulence intensity (TI) showed that the TI obtained by the SSL was significantly lower than that obtained by the cup anemometers, while that obtained by the DSL was in line with the cup observations. The accuracy of the potential annual energy production estimates was finally investigated. The results showed no apparent difference between the DSL and SSL. This long‐term experiment indicated that the SSL is suitable for assessing wind resources due to reduced technical and financial constraints in comparison to installing a meteorological mast offshore. However, the DSL would be useful for assessing not only wind resources but also site‐specific conditions, as it performed well for the TI measurements.
Coastal Wind Measurements Using a Single Scanning LiDAR
A wind measurement campaign using a single scanning light detection and ranging (LiDAR) device was conducted at the Hazaki Oceanographical Research Station (HORS) on the Hazaki coast of Japan to evaluate the performance of the device for coastal wind measurements. The scanning LiDAR was deployed on the landward end of the HORS pier. We compared the wind speed and direction data recorded by the scanning LiDAR to the observations obtained from a vertical profiling LiDAR installed at the opposite end of the pier, 400 m from the scanning LiDAR. The best practice for offshore wind measurements using a single scanning LiDAR was evaluated by comparing results from a total of nine experiments using several different scanning settings. A two-parameter velocity volume processing (VVP) method was employed to retrieve the horizontal wind speed and direction from the radial wind speed. Our experiment showed that, at the current offshore site with a negligibly small vertical wind speed component, the accuracy of the scanning LiDAR wind speeds and directions was sensitive to the azimuth angle setting, but not to the elevation angle setting. In addition to the validations for the 10-minute mean wind speeds and directions, the application of LiDARs for the measurement of the turbulence intensity (TI) was also discussed by comparing the results with observations obtained from a sonic anemometer, mounted at the seaward end of the HORS pier, 400 m from the scanning LiDAR. The standard deviation obtained from the scanning LiDAR measurement showed a greater fluctuation than that obtained from the sonic anemometer measurement. However, the difference between the scanning LiDAR and sonic measurements appeared to be within an acceptable range for the wind turbine design. We discuss the variations in data availability and accuracy based on an analysis of the carrier-to-noise ratio (CNR) distribution and the goodness of fit for curve fitting via the VVP method.
Accuracy Verification of Multiple Floating LiDARs at the Mutsu-Ogawara Site
Floating LiDAR systems (FLSs) may replace conventional offshore met masts, and they have been developed well in Europe. However, before using them in Japan, we must determine whether they demonstrate the same performance under the unique East-Asian meteorological and oceanographic conditions. Therefore, herein, we investigate the performance of FLSs by focusing on the differences among models. Four independent wind datasets from three FLSs were simultaneously verified against a reference met mast and vertical LiDAR at a Japanese site. The data availability was confirmed to vary from 62.7 to 98.0% over the period at 63 m. This was strongly affected by the system availability of the buoy and LiDAR, suggesting that buoy system robustness is key to better campaigns with higher data availability. The 10 min averaged wind speed and direction largely satisfied the Carbon Trust’s key performance indicators, with a low sensitivity to wave conditions depending on the buoy shape. The standard deviation of the wind speed and turbulence intensity had poorer accuracy than that of the 10 min averaged statistics because of the wave-induced buoy motion, especially for small buoys. In short, this paper provides an overview of a measurement by FLS in Japan. Also, the unique verification with multiple units suggests the need for a low-motion buoy or motion compensation to improve the measurement accuracy of the turbulence component.
Investigation of the Fetch Effect Using Onshore and Offshore Vertical LiDAR Devices
An offshore wind measurement campaign using vertical light detection and ranging (LiDAR) devices was conducted at the Hazaki Oceanographic Research Station (HORS) as part of an investigation into determining the optimal distance from the coast for a nearshore wind farm from a meteorological perspective. The research platform was a 427 m long pier located on a rectilinear coastline on the Pacific coast of the central Honshu Island in Japan. The relationship between the ratios of the increase of wind speed near the surface and fetch length within 5 km of the coast was analyzed via LiDAR observations taken at heights from 40 to 200 m. The results showed that the speed of the coastal wind blowing from land to sea gradually increased as the fetch length increased, by approximately 15–20% at 50 m above sea level around a fetch length of 2 km. Moreover, empirical equations were derived by applying the power law to the relationship between the increase of wind speed and fetch lengths at 1–5 km, as obtained from the LiDAR measurements. It was also found that the wind speed increase at a 2 km fetch length was equivalent to the effect of a 50–90 m vertical height increase on the coast in this region.
Accuracy Comparison of Coastal Wind Speeds between WRF Simulations Using Different Input Datasets in Japan
In order to improve the accuracy of the wind speed simulated by a mesoscale model for the wind resource assessment in coastal areas, this study evaluated the effectiveness of using the Japan Meteorological Agency (JMA)’s latest and finest (2 km × 2 km) grid point value (GPV) data, produced from the local forecast model (LFM) as input data to the mesoscale model. The evaluation was performed using wind lidar measurements at two sites located on the coasts of the Sea of Japan and Pacific Ocean. The accuracy of the LFM–GPV was first compared with that of two products from the JMA Meso Scale Model (MSM) (5 km × 5 km): MSM-GPV and mesoscale analysis (MANAL). Consequently, it was shown that LFM–GPV exhibited the most accurate wind speeds against lidar measurements. Next, dynamical downscaling simulations were performed using the weather research and forecasting model (WRF) forced by the three datasets above, and their results were compared. As compared to the GPVs, it was found that the WRF dynamical downscaling simulation using them as input can improve the accuracy of the coastal wind speeds. This was attributed to the advantage of the WRF simulation to improve the negative bias from the input data, especially for the winds blowing from the sea sectors. It was also found that even if the LFM–GPV is used as an input to the WRF simulation, it does not always reproduce more accurate wind speeds, as compared to the simulations using the other two datasets. This result is partly owing to the tendency of WRF to overestimate the wind speed over land, thus obscuring the higher accuracy of the LFM–GPV. It was also shown that the overestimation tendency cannot be improved by only changing the nudging methods or the planetary boundary layer schemes in WRF. These results indicate that it may be difficult to utilize the LFM–GPV in the WRF wind simulation, unless the overestimation tendency of WRF itself is improved first.
A new weather-routing system that accounts for ship stability based on a real-coded genetic algorithm
The operation schedule of an oceangoing vessel can be influenced by wave or wind disturbances, and is therefore weather routed. The weather-routing problem is considered to be a multimodal function problem. Therefore, in the present research, the real-coded genetic algorithm technique (an evolutionary calculation technique) is applied to globally search for the optimum route. Additionally, to avoid maritime accidents due to parametric rolling, this route optimization method takes into account the risk of parametric rolling as one of its objective functions. Numerical verification is carried out for three kinds of objective functions with different weight ratios between fuel efficiency and ship safety in parametric rolling. As a result, it is numerically confirmed that the relation between economics and ship safety is a trade-off, and the safer route is not necessarily the most economical. Considering its robustness, the proposed method appears to be a powerful practical tool by choosing the most appropriate weights for economics and ship safety.
Comparison of Geophysical Model Functions for SAR Wind Speed Retrieval in Japanese Coastal Waters
This work discusses the accuracies of geophysical model functions (GMFs) for retrieval of sea surface wind speed from satellite-borne Synthetic Aperture Radar (SAR) images in Japanese coastal waters characterized by short fetches and variable atmospheric stability conditions. In situ observations from two validation sites, Hiratsuka and Shirahama, are used for comparison of the retrieved sea surface wind speeds using CMOD (C-band model)4, CMOD_IFR2, CMOD5 and CMOD5.N. Of all the geophysical model functions (GMFs), the latest C-band GMF, CMOD5.N, has the smallest bias and root mean square error at both sites. All of the GMFs exhibit a negative bias in the retrieved wind speed. In order to understand the reason for this bias, all SAR-retrieved wind speeds are separated into two categories: onshore wind (blowing from sea to land) and offshore wind (blowing from land to sea). Only offshore winds were found to exhibit the large negative bias, and short fetches from the coastline may be a possible reason for this. Moreover, it is clarified that in both the unstable and stable conditions, CMOD5.N has atmospheric stability effectiveness, and can keep the same accuracy with CMOD5 in the neutral condition. In short, at the moment, CMOD5.N is thought to be the most promising GMF for the SAR wind speed retrieval with the atmospheric stability correction in Japanese coastal waters, although there is ample room for future improvement for the effect from short fetch.