Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
3,647
result(s) for
"Thomas, Jay"
Sort by:
Experimental study of quartz inclusions in garnet at pressures up to 3.0 GPa: evaluating validity of the quartz-in-garnet inclusion elastic thermobarometer
2018
Garnet crystals with quartz inclusions were hydrothermally crystallized from oxide starting materials in piston–cylinder apparatuses at pressures from 0.5 to 3 GPa and temperatures ranging from 700 to 800 °C to study how entrapment conditions affect remnant pressures of quartz inclusions used for quartz-in-garnet (QuiG) elastic thermobarometry. Systematic changes of the 128, 206 and 464 cm−1 Raman band frequencies of quartz were used to determine pressures of quartz inclusions in garnet using Raman spectroscopy calibrations that describe the P–T dependencies of Raman band shifts for quartz under hydrostatic pressure. Within analytical uncertainties, inclusion pressures calculated for each of the three Raman band frequencies are equivalent, which suggests that non-hydrostatic stress effects caused by elastic anisotropy in quartz are smaller than measurement errors. The experimental quartz inclusions have pressures ranging from − 0.351 to 1.247 GPa that span the range of values observed for quartz inclusions in garnets from natural rocks. Quartz inclusion pressures were used to model P–T conditions at which the inclusions could have been trapped. The accuracy of QuiG thermobarometry was evaluated by considering the differences between pressures measured during experiments and pressures calculated using published equation of state parameters for quartz and garnet. Our experimental results demonstrate that Raman measurements performed at room temperature can be used without corrections to estimate garnet crystallization pressures. Calculated entrapment pressures for quartz inclusions in garnet are less than ~ 10% different from pressures measured during the experiments. Because the method is simple to apply with reasonable accuracy, we expect widespread usage of QuiG thermobarometry to estimate crystallization conditions for garnet-bearing silicic rocks.
Journal Article
TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz
by
Nayak, Saroj K.
,
Spear, Frank S.
,
Shemella, Philip T.
in
ABSORPTION
,
CRYSTALLIZATION
,
Earth and Environmental Science
2010
Quartz and rutile were synthesized from silica-saturated aqueous fluids between 5 and 20 kbar and from 700 to 940°C in a piston-cylinder apparatus to explore the potential pressure effect on Ti solubility in quartz. A systematic decrease in Ti-in-quartz solubility occurs between 5 and 20 kbar. Titanium K-edge X-ray absorption near-edge structure (XANES) measurements demonstrate that Ti
4+
substitutes for Si
4+
on fourfold tetrahedral sites in quartz at all conditions studied. Molecular dynamic simulations support XANES measurements and demonstrate that Ti incorporation onto fourfold sites is favored over interstitial solubility mechanisms. To account for the
P
–
T
dependence of Ti-in-quartz solubility, a least-squares method was used to fit Ti concentrations in quartz from all experiments to the simple expression
where
R
is the gas constant 8.3145 J/K,
T
is temperature in Kelvin,
is the mole fraction of TiO
2
in quartz and
is the activity of TiO
2
in the system. The
P
–
T
dependencies of Ti-in-quartz solubility can be used as a thermobarometer when used in combination with another thermobarometer in a coexisting mineral, an independent
P
or
T
estimate of quartz crystallization, or well-constrained phase equilibria. If temperature can be constrained within ±25°C, pressure can be constrained to approximately ±1.2 kbar. Alternatively, if pressure can be constrained to within ±1 kbar, then temperature can be constrained to approximately ±20°C.
Journal Article
Metallic Nanoscaffolds as Osteogenic Promoters: Advances, Challenges and Scope
2021
Bone injuries and fractures are often associated with post-surgical failures, extended healing times, infection, a lack of return to a normal active lifestyle, and corrosion associated allergies. In this regard, this review presents a comprehensive report on advances in nanotechnology driven solutions for bone tissue engineering. The fabrication of metals such as copper, gold, platinum, palladium, silver, strontium, titanium, zinc oxide, and magnetic nanoparticles with tunable physico-chemical and opto-electronic properties for osteogenic scaffolds is discussed here in detail. Furthermore, the rational selection of a polymeric base such as chitosan, collagen, poly (L-lactide), hydroxyl-propyl-methyl cellulose, poly-lactic-co-glycolic acid, polyglucose-sorbitol-carboxymethy ether, polycaprolactone, natural rubber latex, and silk fibroin for scaffold preparation is also discussed. These advanced materials and fabrication strategies not only provide for appropriate mechanical strength but also render integrity, making them appealing for orthopedic applications. Further, such scaffolds can be functionalized with ligands or biomolecules such as hydroxyapatite, polypyrrole (PPy), magnesium, zinc dopants, and growth factors to stimulate osteogenic differentiation, mineralization, and neovascularization to aid in rapid healing. Future directions to co-incorporate bioceramics, biogenic nanoparticles, and fourth generation biomaterials to enhance biocompatibility, mechanical properties, and rapid recovery are also included in this review. Hence, the further development of such biomimetic metal-based nano-scaffolds at a lower cost with reduced risks and greater efficacy at regrowing bone can revolutionize the future of orthopedics.
Journal Article
Overstepping the garnet isograd: a comparison of QuiG barometry and thermodynamic modeling
by
Spear, Frank S.
,
Hallett, Benjamin W.
,
Thomas, Jay B.
in
Analysis
,
Earth and Environmental Science
,
Earth Sciences
2014
The consequences of overstepping the garnet isograd reaction have been investigated by comparing the composition of garnet formed at overstepped P–T conditions (the overstep or “OS” model) with the P–T conditions that would be inferred by assuming garnet nucleated in equilibrium with the matrix assemblage at the isograd (the equilibrium or “EQ” model). The garnet nucleus composition formed at overstepped conditions is calculated as the composition that produces the maximum decrease in Gibbs free energy from the equilibrated, garnet-absent, matrix assemblage for the bulk composition under study. Isopleths were then calculated for this garnet nucleus composition assuming equilibrium with the matrix assemblage (the EQ model). Comparison of the actual P–T conditions of nucleation (the OS model) with those inferred from the EQ model reveals considerable discrepancy between the two. In general, the inferred garnet nucleation P–T conditions (the EQ model) are at a lower temperature and higher or lower pressure (depending on the coexisting calcic phase(s)) than the actual (OS model) nucleation conditions. Moreover, the degree of discrepancy increases with the degree of overstepping. Independent estimates of the pressure of nucleation of garnet were made using the Raman shift of quartz inclusions in garnet (quartz-in-garnet or QuiG barometry). To test the validity of this method, an experimental synthesis of garnet containing quartz inclusions was made at 800 °C, 20 kbar, and the measured Raman shift reproduced the synthesis conditions to within 120 bars. Raman band shifts from three natural samples were then used to calculate an isochore along which garnet was presumed to have nucleated. Model calculations were made at several temperatures along this isochore (the OS model), and these P–T conditions were compared to those computed assuming equilibrium nucleation (the EQ model) to estimate the degree of overstepping displayed by these samples. A sample from the garnet isograd in eastern Vermont is consistent with overstepping of around 10 degrees and 0.6 kbar (affinities of around 2 kJ/mole garnet). A sample from the staurolite–kyanite zone in the same terrane requires overstepping of around 50 °C and 2–5 kbar (affinities of around 10–18 kJ/mole garnet). A similar amount of overstepping was inferred for a blueschist sample from Sifnos, Greece. These results indicate that overstepping of garnet nucleation reactions may be common and pronounced in regionally metamorphosed terranes, and that the P–T conditions and paths inferred from garnet zoning studies may be egregiously in error.
Journal Article
TitaniQ recrystallized: experimental confirmation of the original Ti-in-quartz calibrations
2015
Several studies have reported the
P
–
T
dependencies of Ti-in-quartz solubility, and there is close agreement among three of the four experimental calibrations. New experiments were conducted in the present study to identify potential experimental disequilibrium, and to determine which Ti-in-quartz solubility calibration is most accurate. Crystals of quartz, rutile and zircon were grown from SiO
2
-, TiO
2
-, and ZrSiO
4
-saturated aqueous fluids in an initial synthesis experiment at 925 °C and 10 kbar in a piston-cylinder apparatus. A range of quartz crystal sizes was produced in this experiment; both large and small examples were analyzed by electron microprobe to determine whether Ti concentrations are correlated with crystal size. Cathodoluminescence images and EPMA measurements show that intercrystalline and intracrystalline variations in Ti concentrations are remarkably small regardless of crystal size. The average Ti-in-quartz concentration from the synthesis experiment is 392 ± 1 ppmw Ti, which is within 95 % confidence interval of data from the 10 kbar isobar of Wark and Watson (Contrib Mineral Petrol 152:743–754,
2006
) and Thomas et al. (Contrib Mineral Petrol 160:743–759,
2010
). As a cross-check on the Ti-in-quartz calibration, we also measured the concentration of Zr in rutile from the synthesis experiment. The average Zr-in-rutile concentration is 4337 ± 32 ppmw Zr, which is also within the 95 % confidence interval of the Zr-in-rutile solubility calibration of Ferry and Watson (Contrib Mineral Petrol 154:429–437,
2007
). The
P
–
T
dependencies of Ti solubility in quartz and Zr solubility in rutile were applied as a thermobarometer to the experimental sample. The average Ti-in-quartz isopleth calculated from the calibration of Thomas et al. (Contrib Mineral Petrol 160:743–759,
2010
) and the average Zr-in-rutile isopleth calculated from the calibration of Tomkins et al. (J Metamorph Geol 25:703–713,
2007
) cross at 9.5 kbar and 920 °C, which is in excellent agreement with the
P
–
T
conditions of the synthesis experiment. Separates of the high-Ti quartz from the initial synthesis experiment described above were used as starting material in subsequent experiments at 20 kbar, at which pressure the solubility of Ti in quartz is expected to be significantly lower in the recrystallized quartz. These recrystallization experiments were conducted under wet and dry conditions at 925 °C, and under wet conditions at 850 °C. Both wet and dry recrystallization experiments produced polycrystalline quartzites. Rutile occurs as inclusions in quartz, and as individual crystals dispersed along quartz grain boundaries. Quartz that grew during the recrystallization experiments has dark cathodoluminescence indicating substantially lower Ti concentrations. The average Ti concentrations in quartz from the recrystallization experiments are within the 95 % confidence interval of a linear fit to the 20 kbar data of Thomas et al. (Contrib Mineral Petrol 160:743–759,
2010
). Collectively, the results from the synthesis and recrystallization experiments confirm that the Ti-in-quartz concentrations used to calibrate the
P
–
T
dependencies of Ti-in-quartz solubility in Thomas et al.’s (Contrib Mineral Petrol 160:743–759,
2010
) calibration represent the equilibrium concentrations of Ti in quartz.
Journal Article
Re-equilibration of quartz inclusions in garnet
2024
Inclusion–host elastic thermobarometers are widely used to determine the pressure and temperature (P–T) histories of metamorphic rocks. Complex metamorphic P–T paths can affect the pressures that develop in host–inclusion systems. There are limited experimental studies that investigate how changing P–T conditions may re-equilibrate or “reset” residual pressures of inclusions. To evaluate re-equilibration of the quartz-in-garnet (QuiG) elastic thermobarometer, we performed single-, two-, and three-stage isothermal experiments. In the first stage of the experiments, oxide starting materials hydrothermally crystallised to grow garnet crystals with quartz inclusions between 700 and 800 °C and 1.0 and 3.2 GPa with constant P–T conditions for 48 h. In the second and third stage of the experiments, we isothermally changed pressure by 1.0 to 1.2 GPa for durations up to 38 d. We used Raman spectroscopy to measure strain-induced changes to the 128, 207, and 465 cm−1 Raman bands of quartz inclusions to determine the inclusion pressures (Pinc) and entrapment pressures (Ptrap) at the experimental temperature. The multi-stage experiments show that elasticity primarily controlled changes to Pinc values that occur from Ptrap through quenching to room conditions and that Pinc values measured at room conditions along with elastic modelling can be used to accurately calculate Ptrap. Quartz Pinc values in two-stage experiments re-equilibrated to give Pinc values between P1 and P2. The three-stage isothermal experiments show that the observed changes to inclusion pressures are reversible along different P–T paths to restore the re-equilibrated Pinc values back to their original entrapment isomeke at Ptrap. For rocks that underwent protracted metamorphism along complicated P–T paths, the re-equilibration experiments and viscoelastic calculations show that QuiG may underestimate maximum Ptrap conditions.
Journal Article
P–T Evolution of the Cyclades Blueschist Unit: Constraints on the Evolution of a Nascent Subduction System From Zr‐In‐Rutile (ZiR) and Quartz‐In‐Garnet (QuiG) Thermobarometry
by
Hubbard, Julia E.
,
Spear, Frank S.
,
Wolfe, Oliver M.
in
Chlorite
,
Cyclades blueschists
,
Earthquakes
2024
New results that employ Zr‐in‐rutile thermometry (ZiR) and quartz‐inclusion‐in‐garnet (QuiG) barometry constrain the P–T conditions of garnet formation in blueschists and eclogites from the island of Syros, Greece. QuiG barometry reveals that garnet from different regions across the island formed at pressures ranging from 1.1 to 1.8 GPa and ZiR thermometry on rutile inclusions in garnet constrains the minimum temperature of garnet formation to have been 475–550°C. Most importantly, there is no systematic difference in the conditions of garnet formation from different regions across the island and these results are nearly identical to those obtained from the islands of Sifnos and Ios, Greece. A model is proposed whereby the rocks from all three islands were initially metamorphosed along a relatively shallow geotherm of around 11°C/km to a depth of around 45 km and were then subjected to metamorphism along a geotherm of around 7–8°C/km, which could have been caused by either an increase in the dip of the subduction zone or an increase in the rate of subduction. Garnet formed along this steeper geotherm was accompanied by the release of significant H2O from the breakdown of chlorite over a duration of 1 Ma or less based on thermal and diffusion modeling. It is concluded that rocks from Syros, Sifnos and Ios all followed a similar, roughly counter‐clockwise prograde P–T path and that the present outcrop configuration is largely due to a complex exhumation history. Plain Language Summary The metamorphism of rocks in subduction zones releases large quantities of H2O, which ultimately helps flux melting in the overlying mantle leading to explosive island arc volcanism and provides a trigger for large earthquakes. One of the dominant processes that produce large amounts of H2O is the formation of the mineral garnet. Here, we present results that constrain the pressure and temperature conditions for the formation of garnet from three islands in the Greek Cyclades: Syros, Sifnos, and Ios. Our results indicate that garnet formed in different rocks on all three islands in a similar subduction channel along a trajectory where the pressure increase was relatively rapid and the temperature remained nearly constant. The duration of garnet formation in the entire suite of samples is estimated to have occurred in 1 million years or less, during which time significant quantities of fluid are inferred to have been released and which most likely had a major impact on volcanism and seismicity in the region while subduction was active. Key Points Blueschist and eclogite assemblages do not necessarily reflect equilibrium crystallization Exhumation following garnet growth must occur within 1 Ma to preserve compositional zoning The prograde subduction P–T path in the Cyclades is concave upward with initial shallow subduction followed by near isothermal loading
Journal Article
First evaluation of stiff-in-soft host–inclusion systems: experimental synthesis of zircon inclusions in quartz crystals
by
Alvaro, Matteo
,
Thomas, Jay B.
,
Mazzucchelli, Mattia L.
in
Analytical methods
,
Comparative analysis
,
Cooling
2024
Quartz crystals with zircon inclusions were synthesized using a piston-cylinder apparatus to experimentally evaluate the use of inclusions in “soft” host minerals for elastic thermobarometry. Synthesized zircon inclusion strains and, therefore, pressures (
P
inc
) were measured using Raman spectroscopy and then compared with the expected inclusion strains and pressures calculated from elastic models. Measured inclusion strains and inclusion pressures are systematically more tensile than the expected values and, thus, re-calculated entrapment pressures are overestimated. These discrepancies are not caused by analytical biases or assumptions in the elastic models and strain calculations. Analysis shows that inclusion strain discrepancies progressively decrease with decreasing experimental temperature in the α-quartz field. This behavior is consistent with inelastic deformation of the host–inclusion pairs induced by the development of large differential stresses during experimental cooling. Therefore, inclusion strains are more reliable for inclusions trapped at lower temperature conditions in the α-quartz field where there is less inelastic deformation of the host–inclusion systems. On the other hand, entrapment isomekes of zircon inclusions entrapped in the β-quartz stability field plot along the α–β quartz phase boundary, suggesting that the inclusion strains were mechanically reset at the phase boundary during experimental cooling and decompression. Therefore, inclusions contained in soft host minerals can be used for elastic thermobarometry and inclusions contained in β-quartz may provide constraints on the
P
–
T
at which the host–inclusion system crossed the phase boundary during exhumation.
Journal Article
Radiocarbon test for demographic events in written and oral history
by
Edinborough, Kevan
,
Brown, Thomas Jay
,
Porčić, Marko
in
Anthropology
,
Archaeology
,
Bubonic plague
2017
We extend an established simulation-based method to test for significant short-duration (1–2 centuries) demographic events known from one documented historical and one oral historical context. Case study 1 extrapolates population data from the Western historical tradition using historically derived demographic data from the catastrophic European Black Death/bubonic plague (Yersinia pestis). We find a corresponding statistically significant drop in absolute population using an extended version of a previously published simulation method. Case study 2 uses this refined simulation method to test for a settlement gap identified in oral historical records of descendant Tsimshian First Nations communities from the Prince Rupert Harbour region of the Pacific Northwest region of British Columbia, Canada. Using a regional database of n = 523 radiocarbon dates, we find a significant drop in relative population using the extended simulation-based method consistent with Tsimshian oral records. We conclude that our technical refinement extends the utility of radiocarbon simulation methods and can provide a rigorous test of demographic predictions derived from a range of historical sources.
Journal Article
Structure and Properties of Silica Glass Densified in Cold Compression and Hot Compression
by
Huang, Liping
,
Bruce Watson, E.
,
Ackerson, Michael R.
in
140/133
,
639/301/119/1002
,
639/301/119/2795
2015
Silica glass has been shown in numerous studies to possess significant capacity for permanent densification under pressure at different temperatures to form high density amorphous (HDA) silica. However, it is unknown to what extent the processes leading to irreversible densification of silica glass in cold-compression at room temperature and in hot-compression (e.g., near glass transition temperature) are common in nature. In this work, a hot-compression technique was used to quench silica glass from high temperature (1100 °C) and high pressure (up to 8 GPa) conditions, which leads to density increase of ~25% and Young’s modulus increase of ~71% relative to that of pristine silica glass at ambient conditions. Our experiments and molecular dynamics (MD) simulations provide solid evidences that the intermediate-range order of the hot-compressed HDA silica is distinct from that of the counterpart cold-compressed at room temperature. This explains the much higher thermal and mechanical stability of the former than the latter upon heating and compression as revealed in our
in-situ
Brillouin light scattering (BLS) experiments. Our studies demonstrate the limitation of the resulting density as a structural indicator of polyamorphism and point out the importance of temperature during compression in order to fundamentally understand HDA silica.
Journal Article