Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,452
result(s) for
"Thomas Gregor"
Sort by:
Transcriptional coupling of distant regulatory genes in living embryos
2022
The prevailing view of metazoan gene regulation is that individual genes are independently regulated by their own dedicated sets of transcriptional enhancers. Past studies have reported long-range gene–gene associations
1
–
3
, but their functional importance in regulating transcription remains unclear. Here we used quantitative single-cell live imaging methods to provide a demonstration of co-dependent transcriptional dynamics of genes separated by large genomic distances in living
Drosophila
embryos. We find extensive physical and functional associations of distant paralogous genes, including co-regulation by shared enhancers and co-transcriptional initiation over distances of nearly 250 kilobases. Regulatory interconnectivity depends on promoter-proximal tethering elements, and perturbations in these elements uncouple transcription and alter the bursting dynamics of distant genes, suggesting a role of genome topology in the formation and stability of co-transcriptional hubs. Transcriptional coupling is detected throughout the fly genome and encompasses a broad spectrum of conserved developmental processes, suggesting a general strategy for long-range integration of gene activity.
In
Drosophila
, there are extensive physical and functional associations of distant paralogous genes, including co-regulation by shared enhancers and co-transcriptional initiation over distances of nearly 250 kilobases.
Journal Article
Onset of Collective Behavior in Social Amoebae
by
Masaki, Noritaka
,
Sawai, Satoshi
,
Gregor, Thomas
in
3',5'-Cyclic-AMP Phosphodiesterases - metabolism
,
Adenylyl Cyclases - metabolism
,
Aggregation
2010
In the social amoebae Dictyostelium discoideum, periodic synthesis and release of extracellular cyclic adenosine 3',5'-monophosphate (cAMP) guide cell aggregation and commitment to form fruiting bodies. It is unclear whether these oscillations are an intrinsic property of individual cells or if they exist only as a population-level phenomenon. Here, we showed by live-cell imaging of intact cell populations that pulses originate from a discrete location despite constant exchange of cells to and from the region. In a perfusion chamber, both isolated single cells and cell populations switched from quiescence to rhythmic activity depending on the concentration of extracellular cAMP. A quantitative analysis showed that stochastic pulsing of individual cells below the threshold concentration of extracellular cAMP plays a critical role in the onset of collective behavior.
Journal Article
Morphogenesis at criticality
by
Dubuis, Julien O.
,
Bialek, William
,
Krotov, Dmitry
in
Animals
,
Approximation
,
Biological Evolution
2014
Spatial patterns in the early fruit fly embryo emerge from a network of interactions among transcription factors, the gap genes, driven by maternal inputs. Such networks can exhibit many qualitatively different behaviors, separated by critical surfaces. At criticality, we should observe strong correlations in the fluctuations of different genes around their mean expression levels, a slowing of the dynamics along some but not all directions in the space of possible expression levels, correlations of expression fluctuations over long distances in the embryo, and departures from a Gaussian distribution of these fluctuations. Analysis of recent experiments on the gap gene network shows that all these signatures are observed, and that the different signatures are related in ways predicted by theory. Although there might be other explanations for these individual phenomena, the confluence of evidence suggests that this genetic network is tuned to criticality.
Journal Article
Dynamic regulation of eve stripe 2 expression reveals transcriptional bursts in living Drosophila embryos
by
Garcia, Hernan G.
,
Bothma, Jacques P.
,
Levine, Michael
in
Animals
,
Biological Sciences
,
Cell Nucleus - metabolism
2014
We present the use of recently developed live imaging methods to examine the dynamic regulation of even-skipped (eve) stripe 2 expression in the precellular Drosophila embryo. Nascent transcripts were visualized via MS2 RNA stem loops. The eve stripe 2 transgene exhibits a highly dynamic pattern of de novo transcription, beginning with a broad domain of expression during nuclear cycle 12 (nc12), and progressive refinement during nc13 and nc14. The mature stripe 2 pattern is surprisingly transient, constituting just ∼15 min of the ∼90-min period of expression. Nonetheless, this dynamic transcription profile faithfully predicts the limits of the mature stripe visualized by conventional in situ detection methods. Analysis of individual transcription foci reveals intermittent bursts of de novo transcription, with duration cycles of 4–10 min. We discuss a multistate model of transcription regulation and speculate on its role in the dynamic repression of the eve stripe 2 expression pattern during development.
Journal Article
Positional information, in bits
by
Tkačik, Gašper
,
Dubuis, Julien O.
,
Bialek, William
in
Animals
,
Approximation
,
Biological Sciences
2013
Cells in a developing embryo have no direct way of “measuring” their physical position. Through a variety of processes, however, the expression levels of multiple genes come to be correlated with position, and these expression levels thus form a code for “positional information.” We show how to measure this information, in bits, using the gap genes in the Drosophila embryo as an example. Individual genes carry nearly two bits of information, twice as much as would be expected if the expression patterns consisted only of on/off domains separated by sharp boundaries. Taken together, four gap genes carry enough information to define a cell’s location with an error bar of [Formula] along the anterior/posterior axis of the embryo. This precision is nearly enough for each cell to have a unique identity, which is the maximum information the system can use, and is nearly constant along the length of the embryo. We argue that this constancy is a signature of optimality in the transmission of information from primary morphogen inputs to the output of the gap gene network.
Journal Article
Dynamic interpretation of maternal inputs by the Drosophila segmentation gene network
by
Morrison, Alexander H.
,
Liu, Feng
,
Gregor, Thomas
in
Animals
,
Biological Sciences
,
Body Patterning - genetics
2013
Patterning of body parts in multicellular organisms relies on the interpretation of transcription factor (TF) concentrations by genetic networks. To determine the extent by which absolute TF concentration dictates gene expression and morphogenesis programs that ultimately lead to patterns in Drosophila embryos, we manipulate maternally supplied patterning determinants and measure readout concentration at the position of various developmental markers. When we increase the overall amount of the maternal TF Bicoid (Bcd) fivefold, Bcd concentrations in cells at positions of the cephalic furrow, an early morphological marker, differ by a factor of 2. This finding apparently contradicts the traditional threshold-dependent readout model, which predicts that the Bcd concentrations at these positions should be identical. In contrast, Bcd concentration at target gene expression boundaries is nearly unchanged early in development but adjusts dynamically toward the same twofold change as development progresses. Thus, the Drosophila segmentation gene network responds faithfully to Bcd concentration during early development, in agreement with the threshold model, but subsequently partially adapts in response to altered Bcd dosage, driving segmentation patterns toward their WT positions. This dynamic response requires other maternal regulators, such as Torso and Nanos, suggesting that integration of maternal input information is not achieved through molecular interactions at the time of readout but through the subsequent collective interplay of the network.
Journal Article
Prevalence and patterns of vitamin D deficiency and its role in cognitive functioning in a cohort from South India
2024
Vitamin D (VitD) is a naturally occurring, fat-soluble vitamin which regulates calcium and phosphate homeostasis in the human body and is also known to have a neuroprotective role. VitD deficiency has often been associated with impaired cognition and a higher risk of dementia. In this study, we aimed to explore the relationship between levels of VitD and cognitive functioning in adult individuals. 982 cognitively healthy adults (≥ 45 years) were recruited as part of the CBR-Tata Longitudinal Study for Aging (TLSA). Addenbrooke’s cognitive examination-III (ACE-III) and Hindi mental status examination (HMSE) were used to measure cognitive functioning. 25-hydroxyvitamin D [25(OH)D] levels were measured from the collected serum sample and classified into three groups— deficient (< 20 ng/ml), insufficient (20–29 ng/ml) and normal (≥ 30 ng/ml). Statistical analysis was done using IBM SPSS software, version 28.0.1.1(15). The mean age of the participants was 61.24 ± 9 years. Among 982 participants, 572 (58%) were deficient, 224 (23%) insufficient and only 186 (19%) had normal levels of VitD. Kruskal–Wallis H test revealed a significant difference in age (
p
= 0.015) and education (
p
= 0.021) across VitD levels and the Chi-square test revealed a significant association between gender (
p
= 0.001) and dyslipidemia status (
p
= 0.045) with VitD levels. After adjusting for age, education, gender and dyslipidemia status, GLM revealed that individuals with deficient (
p
= 0.038) levels of VitD had lower scores in ACE-III verbal fluency as compared to normal. Additionally, we also found that 91.2% individuals who had VitD deficiency were also having dyslipidemia. It is concerning that VitD deficiency impacts lipid metabolism. Lower levels of VitD also negatively impacts verbal fluency in adult individuals. Verbal fluency involves higher order cognitive functions and this result provides us with a scope to further investigate the different domains of cognition in relation to VitD deficiency and other associated disorders.
Journal Article
Positional Information, Positional Error, and Readout Precision in Morphogenesis: A Mathematical Framework
by
Tkačik, Gašper
,
Petkova, Mariela D
,
Dubuis, Julien O
in
Animals
,
Cellular biology
,
Drosophila
2015
The concept of positional information is central to our understanding of how cells determine their location in a multicellular structure and thereby their developmental fates. Nevertheless, positional information has neither been defined mathematically nor quantified in a principled way. Here we provide an information-theoretic definition in the context of developmental gene expression patterns and examine the features of expression patterns that affect positional information quantitatively. We connect positional information with the concept of positional error and develop tools to directly measure information and error from experimental data. We illustrate our framework for the case of gap gene expression patterns in the early Drosophila embryo and show how information that is distributed among only four genes is sufficient to determine developmental fates with nearly single-cell resolution. Our approach can be generalized to a variety of different model systems; procedures and examples are discussed in detail.
Journal Article
The Formation of the Bicoid Morphogen Gradient Requires Protein Movement from Anteriorly Localized mRNA
by
Tkačik, Gašper
,
Little, Shawn C.
,
Kneeland, Thomas B.
in
Animals
,
Bicoid protein
,
Biodegradation
2011
The Bicoid morphogen gradient directs the patterning of cell fates along the anterior-posterior axis of the syncytial Drosophila embryo and serves as a paradigm of morphogen-mediated patterning. The simplest models of gradient formation rely on constant protein synthesis and diffusion from anteriorly localized source mRNA, coupled with uniform protein degradation. However, currently such models cannot account for all known gradient characteristics. Recent work has proposed that bicoid mRNA spatial distribution is sufficient to produce the observed protein gradient, minimizing the role of protein transport. Here, we adapt a novel method of fluorescent in situ hybridization to quantify the global spatio-temporal dynamics of bicoid mRNA particles. We determine that >90% of all bicoid mRNA is continuously present within the anterior 20% of the embryo. bicoid mRNA distribution along the body axis remains nearly unchanged despite dynamic mRNA translocation from the embryo core to the cortex. To evaluate the impact of mRNA distribution on protein gradient dynamics, we provide detailed quantitative measurements of nuclear Bicoid levels during the formation of the protein gradient. We find that gradient establishment begins 45 minutes after fertilization and that the gradient requires about 50 minutes to reach peak levels. In numerical simulations of gradient formation, we find that incorporating the actual bicoid mRNA distribution yields a closer prediction of the observed protein dynamics compared to modeling protein production from a point source at the anterior pole. We conclude that the spatial distribution of bicoid mRNA contributes to, but cannot account for, protein gradient formation, and therefore that protein movement, either active or passive, is required for gradient formation.
Journal Article