Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
225 result(s) for "Thompson, Wesley K."
Sort by:
Recalibrating expectations about effect size: A multi-method survey of effect sizes in the ABCD study
Effect sizes are commonly interpreted using heuristics established by Cohen (e.g., small: r = .1, medium r = .3, large r = .5), despite mounting evidence that these guidelines are mis-calibrated to the effects typically found in psychological research. This study’s aims were to 1) describe the distribution of effect sizes across multiple instruments, 2) consider factors qualifying the effect size distribution, and 3) identify examples as benchmarks for various effect sizes. For aim one, effect size distributions were illustrated from a large, diverse sample of 9/10-year-old children. This was done by conducting Pearson’s correlations among 161 variables representing constructs from all questionnaires and tasks from the Adolescent Brain and Cognitive Development Study® baseline data. To achieve aim two, factors qualifying this distribution were tested by comparing the distributions of effect size among various modifications of the aim one analyses. These modified analytic strategies included comparisons of effect size distributions for different types of variables, for analyses using statistical thresholds, and for analyses using several covariate strategies. In aim one analyses, the median in-sample effect size was .03, and values at the first and third quartiles were .01 and .07. In aim two analyses, effects were smaller for associations across instruments, content domains, and reporters, as well as when covarying for sociodemographic factors. Effect sizes were larger when thresholding for statistical significance. In analyses intended to mimic conditions used in “real-world” analysis of ABCD data, the median in-sample effect size was .05, and values at the first and third quartiles were .03 and .09. To achieve aim three, examples for varying effect sizes are reported from the ABCD dataset as benchmarks for future work in the dataset. In summary, this report finds that empirically determined effect sizes from a notably large dataset are smaller than would be expected based on existing heuristics.
Task fMRI paradigms may capture more behaviorally relevant information than resting-state functional connectivity
•Functional connectivity (FC) patterns derived from fMRI tasks outperform resting-state FC at predicting individual differences in a measure of cognitive task performance and a task-derived behavioral inhibition measure.•The improvement in behavioral prediction afforded by fMRI tasks over resting-state is largely associated with the FC of the task model fit.•FC of the task model fit and task design model parameters contain shared and unique behavioral prediction power. Characterizing the optimal fMRI paradigms for detecting behaviorally relevant functional connectivity (FC) patterns is a critical step to furthering our knowledge of the neural basis of behavior. Previous studies suggested that FC patterns derived from task fMRI paradigms, which we refer to as task-based FC, are better correlated with individual differences in behavior than resting-state FC, but the consistency and generalizability of this advantage across task conditions was not fully explored. Using data from resting-state fMRI and three fMRI tasks from the Adolescent Brain Cognitive Development Study ® (ABCD), we tested whether the observed improvement in behavioral prediction power of task-based FC can be attributed to changes in brain activity induced by the task design. We decomposed the task fMRI time course of each task into the task model fit (the fitted time course of the task condition regressors from the single-subject general linear model) and the task model residuals, calculated their respective FC, and compared the behavioral prediction performance of these FC estimates to resting-state FC and the original task-based FC. The FC of the task model fit was better than the FC of the task model residual and resting-state FC at predicting a measure of general cognitive ability or two measures of performance on the fMRI tasks. The superior behavioral prediction performance of the FC of the task model fit was content-specific insofar as it was only observed for fMRI tasks that probed similar cognitive constructs to the predicted behavior of interest. To our surprise, the task model parameters, the beta estimates of the task condition regressors, were equally if not more predictive of behavioral differences than all FC measures. These results showed that the observed improvement of behavioral prediction afforded by task-based FC was largely driven by the FC patterns associated with the task design. Together with previous studies, our findings highlighted the importance of task design in eliciting behaviorally meaningful brain activation and FC patterns.
Bivariate causal mixture model quantifies polygenic overlap between complex traits beyond genetic correlation
Accumulating evidence from genome wide association studies (GWAS) suggests an abundance of shared genetic influences among complex human traits and disorders, such as mental disorders. Here we introduce a statistical tool, MiXeR, which quantifies polygenic overlap irrespective of genetic correlation, using GWAS summary statistics. MiXeR results are presented as a Venn diagram of unique and shared polygenic components across traits. At 90% of SNP-heritability explained for each phenotype, MiXeR estimates that 8.3 K variants causally influence schizophrenia and 6.4 K influence bipolar disorder. Among these variants, 6.2 K are shared between the disorders, which have a high genetic correlation. Further, MiXeR uncovers polygenic overlap between schizophrenia and educational attainment. Despite a genetic correlation close to zero, the phenotypes share 8.3 K causal variants, while 2.5 K additional variants influence only educational attainment. By considering the polygenicity, discoverability and heritability of complex phenotypes, MiXeR analysis may improve our understanding of cross-trait genetic architectures. To better understand the phenotypic relationships of complex traits it is also important to understand their genetic overlap. Here, Frei et al. develop MiXeR which uses GWAS summary statistics to evaluate the polygenic overlap between two traits irrespective of their genetic correlation.
Prediction of neurocognition in youth from resting state fMRI
Difficulties with higher-order cognitive functions in youth are a potentially important vulnerability factor for the emergence of problematic behaviors and a range of psychopathologies. This study examined 2013 9–10 year olds in the first data release from the Adolescent Brain Cognitive Development 21-site consortium study in order to identify resting state functional connectivity patterns that predict individual-differences in three domains of higher-order cognitive functions: General Ability, Speed/Flexibility, and Learning/Memory. For General Ability scores in particular, we observed consistent cross-site generalizability, with statistically significant predictions in 14 out of 15 held-out sites. These results survived several tests for robustness including replication in split-half analysis and in a low head motion subsample. We additionally found that connectivity patterns involving task control networks and default mode network were prominently implicated in predicting differences in General Ability across participants. These findings demonstrate that resting state connectivity can be leveraged to produce generalizable markers of neurocognitive functioning. Additionally, they highlight the importance of task control-default mode network interconnections as a major locus of individual differences in cognitive functioning in early adolescence.
Meaningful associations in the adolescent brain cognitive development study
•Describes the ABCD study aims and design.•Covers issues surrounding estimation of meaningful associations, including population inferences, effect sizes, and control of covariates.•Outlines best practices for reproducible research and reporting of results.•Provides worked examples that illustrate the main points of the paper. The Adolescent Brain Cognitive Development (ABCD) Study is the largest single-cohort prospective longitudinal study of neurodevelopment and children's health in the United States. A cohort of n = 11,880 children aged 9–10 years (and their parents/guardians) were recruited across 22 sites and are being followed with in-person visits on an annual basis for at least 10 years. The study approximates the US population on several key sociodemographic variables, including sex, race, ethnicity, household income, and parental education. Data collected include assessments of health, mental health, substance use, culture and environment and neurocognition, as well as geocoded exposures, structural and functional magnetic resonance imaging (MRI), and whole-genome genotyping. Here, we describe the ABCD Study aims and design, as well as issues surrounding estimation of meaningful associations using its data, including population inferences, hypothesis testing, power and precision, control of covariates, interpretation of associations, and recommended best practices for reproducible research, analytical procedures and reporting of results.
Reliability and stability challenges in ABCD task fMRI data
Trait stability of measures is an essential requirement for individual differences research. Functional MRI has been increasingly used in studies that rely on the assumption of trait stability, such as attempts to relate task related brain activation to individual differences in behavior and psychopathology. However, recent research using adult samples has questioned the trait stability of task-fMRI measures, as assessed by test-retest correlations. To date, little is known about trait stability of task fMRI in children. Here, we examined within-session reliability and long-term stability of individual differences in task-fMRI measures using fMRI measures of brain activation provided by the adolescent brain cognitive development (ABCD) Study Release v4.0 as an individual's average regional activity, using its tasks focused on reward processing, response inhibition, and working memory. We also evaluated the effects of factors potentially affecting reliability and stability. Reliability and stability (quantified as the ratio of non-scanner related stable variance to all variances) was poor in virtually all brain regions, with an average value of 0.088 and 0.072 for short term (within-session) reliability and long-term (between-session) stability, respectively, in regions of interest (ROIs) historically-recruited by the tasks. Only one reliability or stability value in ROIs exceeded the ‘poor’ cut-off of 0.4, and in fact rarely exceeded 0.2 (only 4.9%). Motion had a pronounced effect on estimated reliability/stability, with the lowest motion quartile of participants having a mean reliability/stability 2.5 times higher (albeit still ‘poor’) than the highest motion quartile. Poor reliability and stability of task-fMRI, particularly in children, diminishes potential utility of fMRI data due to a drastic reduction of effect sizes and, consequently, statistical power for the detection of brain-behavior associations. This essential issue urgently needs to be addressed through optimization of task design, scanning parameters, data acquisition protocols, preprocessing pipelines, and data denoising methods.
Understanding the genetic determinants of the brain with MOSTest
Regional brain morphology has a complex genetic architecture, consisting of many common polymorphisms with small individual effects. This has proven challenging for genome-wide association studies (GWAS). Due to the distributed nature of genetic signal across brain regions, multivariate analysis of regional measures may enhance discovery of genetic variants. Current multivariate approaches to GWAS are ill-suited for complex, large-scale data of this kind. Here, we introduce the Multivariate Omnibus Statistical Test (MOSTest), with an efficient computational design enabling rapid and reliable inference, and apply it to 171 regional brain morphology measures from 26,502 UK Biobank participants. At the conventional genome-wide significance threshold of α = 5 × 10 −8 , MOSTest identifies 347 genomic loci associated with regional brain morphology, more than any previous study, improving upon the discovery of established GWAS approaches more than threefold. Our findings implicate more than 5% of all protein-coding genes and provide evidence for gene sets involved in neuron development and differentiation. Regional brain morphology has a complex genetic architecture. Here the authors present MOSTest, a multivariate statistical framework, apply it to UK Biobank data, and discover hundreds of loci associated with regional brain morphology.
Development and aging of cortical thickness correspond to genetic organization patterns
There is a growing realization that early life influences have lasting impact on brain function and structure. Recent research has demonstrated that genetic relationships in adults can be used to parcellate the cortex into regions of maximal shared genetic influence, and a major hypothesis is that genetically programmed neurodevelopmental events cause a lasting impact on the organization of the cerebral cortex observable decades later. Here we tested how developmental and lifespan changes in cortical thickness fit the underlying genetic organizational principles of cortical thickness in a longitudinal sample of 974 participants between 4.1 and 88.5 y of age with a total of 1,633 scans, including 773 scans from children below 12 y. Genetic clustering of cortical thickness was based on an independent dataset of 406 adult twins. Developmental and adult age-related changes in cortical thickness followed closely the genetic organization of the cerebral cortex, with change rates varying as a function of genetic similarity between regions. Cortical regions with overlapping genetic architecture showed correlated developmental and adult age change trajectories and vice versa for regions with low genetic overlap. Thus, effects of genes on regional variations in cortical thickness in middle age can be traced to regional differences in neurodevelopmental change rates and extrapolated to further adult aging-related cortical thinning. This finding suggests that genetic factors contribute to cortical changes through life and calls for a lifespan perspective in research aimed at identifying the genetic and environmental determinants of cortical development and aging.
Vertex-wise multivariate genome-wide association study identifies 780 unique genetic loci associated with cortical morphology
•Genetic variants affecting one cortical region often affect other cortical regions.•Standard mass-univariate methods ignore the distributed nature of genetic effects.•Multivariate MOSTest method exploits distributed effects boosting genetic discovery.•Considering fine-grained vertex-wise measures improves genetic discovery further.•Obtained increase in discovery does not come at a cost of poorer generalizability. Brain morphology has been shown to be highly heritable, yet only a small portion of the heritability is explained by the genetic variants discovered so far. Here we extended the Multivariate Omnibus Statistical Test (MOSTest) and applied it to genome-wide association studies (GWAS) of vertex-wise structural magnetic resonance imaging (MRI) cortical measures from N=35,657 participants in the UK Biobank. We identified 695 loci for cortical surface area and 539 for cortical thickness, in total 780 unique genetic loci associated with cortical morphology robustly replicated in 8,060 children of mixed ethnicity from the Adolescent Brain Cognitive Development (ABCD) Study®. This reflects more than 8-fold increase in genetic discovery at no cost to generalizability compared to the commonly used univariate GWAS methods applied to region of interest (ROI) data. Functional follow up including gene-based analyses implicated 10% of all protein-coding genes and pointed towards pathways involved in neurogenesis and cell differentiation. Power analysis indicated that applying the MOSTest to vertex-wise structural MRI data triples the effective sample size compared to conventional univariate GWAS approaches. The large boost in power obtained with the vertex-wise MOSTest together with pronounced replication rates and highlighted biologically meaningful pathways underscores the advantage of multivariate approaches in the context of highly distributed polygenic architecture of the human brain.
A Nonlinear Simulation Framework Supports Adjusting for Age When Analyzing BrainAGE
Several imaging modalities, including T1-weighted structural imaging, diffusion tensor imaging, and functional MRI can show chronological age related changes. Employing machine learning algorithms, an individual's imaging data can predict their age with reasonable accuracy. While details vary according to modality, the general strategy is to: (1) extract image-related features, (2) build a model on a training set that uses those features to predict an individual's age, (3) validate the model on a test dataset, producing a predicted age for each individual, (4) define the \"Brain Age Gap Estimate\" (BrainAGE) as the difference between an individual's predicted age and his/her chronological age, (5) estimate the relationship between BrainAGE and other variables of interest, and (6) make inferences about those variables and accelerated or delayed brain aging. For example, a group of individuals with overall positive BrainAGE may show signs of accelerated aging in other variables as well. There is inevitably an overestimation of the age of younger individuals and an underestimation of the age of older individuals due to \"regression to the mean.\" The correlation between chronological age and BrainAGE may significantly impact the relationship between BrainAGE and other variables of interest when they are also related to age. In this study, we examine the detectability of variable effects under different assumptions. We use empirical results from two separate datasets [training = 475 healthy volunteers, aged 18-60 years (259 female); testing = 489 participants including people with mood/anxiety, substance use, eating disorders and healthy controls, aged 18-56 years (312 female)] to inform simulation parameter selection. Outcomes in simulated and empirical data strongly support the proposal that models incorporating BrainAGE should include chronological age as a covariate. We propose either including age as a covariate in step 5 of the above framework, or employing a multistep procedure where age is regressed on BrainAGE prior to step 5, producing BrainAGE Residualized (BrainAGER) scores.