Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
27 result(s) for "Thoreson, Andrew R."
Sort by:
Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia
Spinal sensorimotor networks that are functionally disconnected from the brain because of spinal cord injury (SCI) can be facilitated via epidural electrical stimulation (EES) to restore robust, coordinated motor activity in humans with paralysis 1 – 3 . Previously, we reported a clinical case of complete sensorimotor paralysis of the lower extremities in which EES restored the ability to stand and the ability to control step-like activity while side-lying or suspended vertically in a body-weight support system (BWS) 4 . Since then, dynamic task-specific training in the presence of EES, termed multimodal rehabilitation (MMR), was performed for 43 weeks and resulted in bilateral stepping on a treadmill, independent from trainer assistance or BWS. Additionally, MMR enabled independent stepping over ground while using a front-wheeled walker with trainer assistance at the hips to maintain balance. Furthermore, MMR engaged sensorimotor networks to achieve dynamic performance of standing and stepping. To our knowledge, this is the first report of independent stepping enabled by task-specific training in the presence of EES by a human with complete loss of lower extremity sensorimotor function due to SCI. In a human subject with chronic paraplegia, a combination of epidural electrical stimulation and long-term rehabilitative training have culminated in the first report of unassisted, voluntary independent stepping in a paralyzed individual.
Enabling Task-Specific Volitional Motor Functions via Spinal Cord Neuromodulation in a Human With Paraplegia
We report a case of chronic traumatic paraplegia in which epidural electrical stimulation (EES) of the lumbosacral spinal cord enabled (1) volitional control of task-specific muscle activity, (2) volitional control of rhythmic muscle activity to produce steplike movements while side-lying, (3) independent standing, and (4) while in a vertical position with body weight partially supported, voluntary control of steplike movements and rhythmic muscle activity. This is the first time that the application of EES enabled all of these tasks in the same patient within the first 2 weeks (8 stimulation sessions total) of EES therapy.
Improving Mechanical Properties of Tendon Allograft through Rehydration Strategies: An In Vitro Study
Allogenic tendons grafts sourced from intrasynovial tendons are often used for tendon reconstruction. Processing is achieved through repetitive freeze–thaw cycles followed by lyophilization. Soaking the lyophilized tendon in saline (0.9%) for 24 h is the standard practice for rehydration. However, data supporting saline rehydration over the use of other hydrating solutions are scant. The purpose of the current study was to compare the effects of different rehydration solutions on biomechanical properties of lyophilized tendon allograft. A total of 36 canine flexor digitorum profundus tendons were collected, five freeze–thaw cycles followed by lyophilization were performed for processing, and then divided into three groups rehydrated with either saline solution (0.9%), phosphate-buffered saline (PBS), or minimum essential medium (MEM). Flexural stiffness, tensile stiffness, and gliding friction were evaluated before and after allograft processing. The flexural moduli in both fibrous and fibrocartilaginous regions of the tendons were measured. After lyophilization and reconstitution, the flexural moduli of both the fibrocartilaginous and non-fibrocartilaginous regions of the tendons increase significantly in the saline and MEM groups (p < 0.05). Compared to the saline and MEM groups, the flexural moduli of the fibrocartilaginous and non-fibrocartilaginous regions of tendons rehydrated with PBS are significantly lower (p < 0.05). Tensile moduli of rehydrated tendons are significantly lower than those of fresh tendons for all groups (p < 0.05). The gliding friction of rehydrated tendons is significantly higher than that of fresh tendons in all groups (p < 0.05). There is no significant difference in either tensile moduli or gliding friction between tendons treated with different rehydration solutions. These results demonstrate that allograft reconstitution can be optimized through careful selection of hydrating solution and that PBS could be a better choice as the impact on flexural properties is lower.
Triamcinolone Acetonide affects TGF-β signaling regulation of fibrosis in idiopathic carpal tunnel syndrome
Background Fibroblast behavior and cell-matrix interactions of cells from normal and idiopathic carpal tunnel syndrome (CTS) subsynovial connective tissue (SSCT) with and without Triamcinolone Acetonide (TA) were compared in this study. A cell-seeded gel contraction model was applied to investigate the effect of steroid treatment on SSCT fibroblast gene expression and function. Methods SSCT cells were obtained from CTS patients and fresh cadavers. Cells were isolated by mechanical and collagenase digestion. Collagen gels (1 mg/ml) were prepared with SSCT cells (1 × 10 6 /mL). A sterile Petri dish with a cloning ring in the center was prepared. The area between the ring and outer dish was filled with cell-seeded collagen solution and gelled for 1 h. The gel was released from the outer way of the petri dish to allow gel contraction. Cell seeded gels were treated with 10 M triamcinolone acetonide (TA) or vehicle (DMSO) in modified MEM. Every 4 h for 3 days the contracting gels were photographed and areas calculated. Duplicate contraction tests were performed with each specimen, and the averages were used in the analyses, which were conducted using two-factor analysis of variance in a generalized linear model framework utilizing generalized estimating equations (GEE) to account for the correlation between samples. The contraction rate was determined by the area change over time, and the decay time constant was calculated. A customized mechanical test system was used to determine gel stiffness and tensile strength. Gene expression was assessed using Human Fibrosis and Cell Motility PCR arrays. Results TA-treated gels had a significantly higher contraction rate, tensile strength and stiffness than the untreated gels. Proteinases involved in remodeling had increased expression in TA-treated gels of the patient group. Pro-fibrotic genes and ECM regulators, such as TGF-β, collagens and integrins, were down-regulated by TA, indicating that TA may work in part by decreasing fibrotic gene expression. Conclusions This study showed that TA affects cell-matrix interaction and suppresses fibrotic gene expression in the SSCT cells of CTS patients.
The Effect of Lubricin on the Gliding Resistance of Mouse Intrasynovial Tendon
The purpose of this study was to investigate the role of lubricin on the gliding resistance of intrasynovial tendons by comparing lubricin knockout, heterozygous, and wild type mice. A total of thirty-six deep digital flexor (DDF) tendons in the third digits of each hind paw from eighteen adult mice were used, including six lubricin knockout mice (Prg4 -/-), six heterozygous mice (Prg4 +/-), and six wild type mice (Prg4 +/+). The tendon gliding resistance was measured using a custom-made device. Tendon structural changes were evaluated by scanning electron and light microscopy. The gliding resistance of intrasynovial tendons from lubricin knockout mice was significantly higher than the gliding resistance of either wild type or heterozygous mice. The surface of the lubricin knockout tendons appeared to be rougher, compared to the wild type and heterozygous tendons. Synovial hyperplasia was found in the lubricin knockout mice. Cartilage-like tissue was found in the tendon and pulley of the lubricin knockout mice. Our findings confirm the importance of lubricin in intrasynovial tendon lubrication. This knockout model may be useful in determining the effect of lubricin on tendon healing and the response to injury.
The Effect of Pulling Angle on Rotator Cuff Mechanical Properties in a Canine In Vitro Model
The objective of this study was to examine the effect of pulling angle on time-zero mechanical properties of intact infraspinatus tendon or infraspinatus tendon repaired with the modified Mason-Allen technique in a canine model in vitro. Thirty-six canine shoulder samples were used. Twenty intact samples were randomly allocated into functional pull (135°) and anatomic pull (70°) groups (n = 10 per group). The remaining sixteen infraspinatus tendons were transected from the insertion and repaired using the modified Mason-Allen technique before being randomly allocated into functional pull or anatomic pull groups (n = 8 per group). Load to failure testing was performed on all specimens. The ultimate failure load and ultimate stress of the functional pulled intact tendons were significantly lower compared with anatomic pulled tendons (1310.2 ± 167.6 N vs. 1687.4 ± 228.2 N, p = 0.0005: 55.6 ± 8.4 MPa vs. 67.1 ± 13.3 MPa, p = 0.0334). For the tendons repaired with the modified Mason-Allen technique, no significant differences were observed in ultimate failure load, ultimate stress or stiffness between functional pull and anatomic pull groups. The variance of pulling angle had a significant influence on the biomechanical properties of the rotator cuff tendon in a canine shoulder model in vitro. Load to failure of the intact infraspinatus tendon was lower at the functional pulling position compared to the anatomic pulling position. This result indicates that uneven load distribution across tendon fibers under functional pull may predispose the tendon to tear. However, this mechanical character is not presented after rotator cuff repair using the modified Mason-Allen technique.
The effects of lyophilization on flexural stiffness of extrasynovial and intrasynovial tendon
Tendon or ligament reconstructions often use autologous or allogenic tendons from either extrasynovial or intrasynovial sources. Allograft tendons must be lyophilized for preservation before transplantation, a process which can impact mechanical properties of the graft. Reconstituted graft properties that are similar to native tendon are desirable. Although tensile and compressive properties of tendons have been investigated, there is a paucity of information describing flexural properties of tendon, which can impact the gliding resistance. This study aims to design a testing method to quantify tendon flexural modulus, and investigate the effects of lyophilization/rehydration procedures on tendon flexibility. A total of 20 peroneus longus tendons (extrasynovial) and 20 flexor digitorum profundus tendons (intrasynovial) were collected. Ten of each tendon were processed with 5 freeze–thaw cycles followed by lyophilization and rehydration with saline solution (0.9%). Bend testing was conducted on tendons to quantify the flexural modulus with and without processing. As canine FDP tendons contain fibrous and fibrocartilaginous tissue regions, the flexural moduli were measured in both regions. Flexural modulus of rehydrated, lyophilized extrasynovial PL tendon was significantly lower than that of similarly processed intrasynovial FDP tendon (p < 0.001). Flexural moduli of both the fibrocartilaginous and non-fibrocartilaginous regions of intrasynovial tendon significantly increased after lyophilization (p < 0.001). The flexural modulus of the fibrocartilaginous region was significantly higher than that of the non-fibrocartilaginous region in intrasynovial tendon (p < 0.001). Lyophilization significantly increases the flexural modulus of extrasynovial and intrasynovial tendons, and flexural modulus differs significantly between these two tendon types. Increases in stiffness caused by lyophilization may impact the mechanical performance of the allograft in vivo.
Bilateral lunotriquetral coalition: a dynamic four-dimensional computed tomography technical case report
Lunotriquetral coalitions are the most common form of carpal coalition wherein the cartilage between the lunate and triquetrum ossification centers failed to undergo apoptosis. This technical case report examines the arthrokinematics of bilateral lunotriquetral coalitions with dissimilar Minnaar types in one participant with one asymptomatic wrist and one wrist with suspected distal radioulnar joint injury. Static and dynamic (four-dimensional) CT images during pronosupination were captured using a photon-counting detector CT scanner. Interosseous proximity distributions were calculated between the lunotriquetral coalition and adjacent bones in both wrists to quantify arthrokinematics. Interosseous proximity distributions at joints adjacent to the lunotriquetral coalition demonstrate differences in median and minimum interosseous proximities between the asymptomatic and injured wrists during resisted pronosupination. Altered kinematics from lunotriquetral coalitions may be a source of ulnar-sided wrist pain and discomfort, limiting the functional range of motion. This case report highlights potential alterations to wrist arthrokinematics in the setting of lunotriquetral coalitions and possible associations with ulnar-sided wrist pain, highlighting anatomy to examine in radiographic follow-up. Furthermore, this case report demonstrates the technical feasibility of four-dimensional CT using photon-counting detector technology in assessing arthrokinematics in the setting of variant wrist anatomy.
Accelerated osteocyte senescence and skeletal fragility in mice with type 2 diabetes
The worldwide prevalence of type 2 diabetes (T2D) is increasing. Despite normal to higher bone density, patients with T2D paradoxically have elevated fracture risk resulting, in part, from poor bone quality. Advanced glycation endproducts (AGEs) and inflammation as a consequence of enhanced receptor for AGE (RAGE) signaling are hypothesized culprits, although the exact mechanisms underlying skeletal dysfunction in T2D are unclear. Lack of inducible models that permit environmental (in obesity) and temporal (after skeletal maturity) control of T2D onset has hampered progress. Here, we show in C57BL/6 mice that a onetime pharmacological intervention (streptozotocin, STZ) initiated in adulthood combined with high-fat diet-induced (HFD-induced) obesity caused hallmark features of human adult-onset T2D, including prolonged hyperglycemia, insulin resistance, and pancreatic β cell dysfunction, but not complete destruction. In addition, HFD/STZ (i.e., T2D) resulted in several changes in bone quality that closely mirror those observed in humans, including compromised bone microarchitecture, reduced biomechanical strength, impaired bone material properties, altered bone turnover, and elevated levels of the AGE CML in bone and blood. Furthermore, T2D led to the premature accumulation of senescent osteocytes with a unique proinflammatory signature. These findings highlight the RAGE pathway and senescent cells as potential targets to treat diabetic skeletal fragility.
Effect of wrist and interphalangeal thumb movement on zone T2 flexor pollicis longus tendon tension in a human cadaver model
Therapy after flexor pollicis longus (FPL) repair typically mimics finger flexor management, but this ignores anatomic and biomechanical features unique to the FPL. We measured FPL tendon tension in zone T2 to identify biomechanically appropriate exercises for mobilizing the FPL. Eight human cadaver hands were studied to identify motions that generated enough force to achieve FPL movement without exceeding hypothetical suture strength. With the carpometacarpal and metacarpophalangeal joints blocked, appropriate forces were produced for both passive interphalangeal (IP) motion with 30° wrist extension and simulated active IP flexion from 0° to 35° with the wrist in the neutral position. This work provides a biomechanical basis for safely and effectively mobilizing the zone T2 FPL tendon. Our cadaver study suggests that it is safe and effective to perform early passive and active exercise to an isolated IP joint. NA.