Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
112 result(s) for "Thrän, Daniela"
Sort by:
A framework for implementing holistic and integrated life cycle sustainability assessment of regional bioeconomy
PurposeCurrently, social, environmental, and economic risks and chances of bioeconomy are becoming increasingly a subject of applied sustainability assessments. Based on life cycle assessment (LCA) methodology, life cycle sustainability assessment (LCSA) aims to combine or integrate social, environmental, and economic assessments. In order to contribute to the current early stage of LCSA development, this study seeks to identify a practical framework for integrated LCSA implementation.MethodsWe select possible indicators from existing suitable LCA and LCSA approaches as well as from the literature, and allocate them to a sustainability concept for holistic and integrated LCSA (HILCSA), based on the Sustainable Development Goals (SDGs). In order to conduct a practical implementation of HILCSA, we choose openLCA, because it offers the best current state and most future potential for application of LCSA. Therefore, not only the capabilities of the software and databases, but also the supported methods of life cycle impact assessments (LCIA) are evaluated regarding the requirements of the indicator set and goal and scope of future case studies.Results and discussionThis study presents an overview of available indicators and LCIAs for bioeconomy sustainability assessments as well as their link to the SDGs. We provide a practical framework for HILCSA of regional bioeconomy, which includes an indicator set for regional (product and territorial) bioeconomy assessment, applicable with current software and databases, LCIA methods and methods of normalization, weighting, and aggregation. The implementation of HILCSA in openLCA allows an integrative LCSA by conducting all steps in a single framework with harmonized, aggregated, and coherent results. HILCSA is capable of a sustainability assessment in terms of planetary boundaries, provisioning system and societal needs, as well as communication of results to different stakeholders.ConclusionsOur framework is capable of compensating some deficits of S-LCA, E-LCA, and economic assessments by integration, and shows main advantages compared to additive LCSA. HILCSA is capable of addressing 15 out of 17 SDGs. It addresses open questions and significant problems of LCSAs in terms of goal and scope, LCI, LCIA, and interpretation. Furthermore, HILCSA is the first of its kind actually applicable in an existing software environment. Regional bioeconomy sustainability assessment is bridging scales of global and regional effects and can inform stakeholders comprehensively on various impacts, hotspots, trade-offs, and synergies of regional bioeconomy. However, significant research needs in LCIAs, software, and indicator development remain.
Energy from biomass
Bioenergy is the most relevant renewable energy source today. Many technologies and concepts are implemented to provide heat, power and transport fuels. While biomass is a limited resource, so bioenergy provision needs integration, not only in the energy system but also in sustainable supply systems. The use of residual and waste materials will increase and needs mobilisation strategies and utilisation technologies. Due to different biomass potentials, energy infrastructure and energy strategies in different countries, even under the transformation towards more and more renewable energy-based energy systems the areas of bioenergy application remain diverse. However, flexible and hybrid concepts are gaining importance in all energy sectors; further technology development and digitalisation are pioneers. Additionally, the interaction with hydrogen and negative emissions is relevant in the long term and needs to be researched now.
Temporally and Spatially Resolved Simulation of the Wind Power Generation in Germany
Temporally and spatially resolved data on wind power generation are very useful for studying the technical and economic aspects of this variable renewable energy at local and regional levels. Due to the lack of disaggregated electricity data from onshore and offshore turbines in Germany, it is necessary to use numerical simulations to calculate the power generation for a given geographic area and time period. This study shows how such a simulation model, which uses freely available plant and weather data as input variables, can be developed with the help of basic atmospheric laws and specific power curves of wind turbines. The wind power model is then applied to ensembles of nearly 28,000 onshore and 1500 offshore turbines to simulate the wind power generation in Germany for the years 2019 and 2020. For both periods, the obtained and spatially aggregated time series are in good agreement with the measured feed-in patterns for the whole of Germany. Such disaggregated simulation results can be used to analyze the power generation at any spatial scale, as each turbine is simulated separately with its location and technical parameters. This paper also presents the daily resolved wind power generation and associated indicators at the federal state level.
In 50 Shades of Orange: Germany’s Photovoltaic Power Generation Landscape
Spatiotemporally resolved data on photovoltaic (PV) power generation are very helpful to analyze the multiple impacts of this variable renewable energy on regional and local scales. In the absence of such disaggregated data for Germany, numerical simulations are needed to obtain the electricity production from PV systems for a time period and region under study. This manuscript presents how a physical simulation model, which uses open access weather and plant data as input vectors, can be created. The developed PV model is then applied to an ensemble of approximately 1.95 million PV systems, consisting of ground-mounted and rooftop installations, in order to compute their electricity production in Germany for the year 2020. The resulting spatially aggregated time series closely matches the measured PV feed-in pattern of Germany throughout the simulated year. Such disaggregated data can be applied to investigate the German PV power generation landscape at various spatiotemporal levels, as each PV system is taken into account with its technical data and the weather conditions at its geo-location. Furthermore, the German PV power generation landscape is presented as detailed maps based on these simulation results, which can also be useful for many other scientific fields such as energy system modeling.
Effects of the German Renewable Energy Sources Act and environmental, social and economic factors on biogas plant adoption and agricultural land use change
Background The German energy transition strategy calls for a reform of the German energy sector. As a result, the German Renewable Energy Sources Act (EEG) passed in 2000 is widely regarded as successful legislation for promoting bioenergy development. More than 1000 biogas plants were constructed in Central Germany (CG) between 2000 and 2014. Despite this, few studies have been conducted for this period, which systematically investigate how environmental, social and economic factors, as well as various EEG amendments have impacted biogas production or what the environmental consequences of biogas production development in CG have been. Methods The impacts of environmental, social and economic factors and different EEG amendments on biogas production decisions in CG were quantified using a multivariate linear regression model and the event study econometric technique. A GIS-based spatial analysis was also conducted to provide insight into the changes to agricultural land use that resulted from the development of biogas plants during the EEG period. Results The main finding was that the income diversification effect resulting from biogas production was the most important factor in a farmer’s decision to adopt biogas production. In addition, all of the EEG amendments had a significant influence on the adoption of biogas production; however, EEG III and IV, which tried to promote small-scale plants, were unable to reduce the average size of the plants constructed in these two amendment periods. From a landscape perspective, there was a striking increase in the cultivation of silage maize in CG from 2000 to 2014. Silage maize was intensively cultivated in regions with a high installed biogas plant capacity. Since the first EEG amendment, permanent grassland area slightly increased while arable land area declined in CG. Conclusions The adoption of biogas production in CG was strongly driven by economic incentives for the farmers, more precisely, by the incentive to diversify their income sources. In addition to increase the subsidy, future EEG amendments should find new measures to encourage the adoption of small-scale biogas plants, which had been unsuccessful in EEG amendments III and IV.
Temporal and spatial availability of cereal straw in Germany—Case study: Biomethane for the transport sector
Background By 2030, the German transport sector needs to achieve additional greenhouse gas savings of 67 million tonnes CO 2 -eq. and further progress requires swiftly implementable solutions. The fermentation of cereal straw is a promising option. Returning the digestate to the farmland can close agricultural cycles while simultaneously producing biomethane. The world's first large-scale, mono-digestion plant for straw is operational since 2014. The temporal and spatial biomass availability is a key issue when replicating this concept. No detailed calculations on this subject are available, and the strategic relevance of biomethane from straw in the transport sector cannot be sufficiently evaluated. Methods To assess the balance of straw supply and use, a total of 30 data sets are combined, taking into account the cultivation of the five most important cereal types and the straw required for ten animal species, two special crops and 12 industrial uses. The data are managed at district level and presented for the years 2010 to 2018. In combination with high-resolution geodata, the results are linked to actual arable fields, and the availability of straw throughout the country is evaluated using a GIS. Results During the analysis period and based on the assumption that in case of fermentation up to 70% of the straw can be utilised, the mobilisable technical biomass potential for future biomethane production is between 13.9–21.5 Tg fm a −1 . The annual potential fluctuates considerably due to weather anomalies. The all-time maximum in 2014 and the minimum for the last 26 years in 2018 are separated by just 4 years and a difference of 7.6 Tg fm. However, large parts of the potential are concentrated only in a few regions and biomethane from straw could provide 57–145 PJ of a low-emission fuel, saving 3–12 Tg CO 2 -eq. in case of full exploitation. Conclusion Despite the strong fluctuations and high uncertainties, the potential is sufficient to supply numerous plants and to produce relevant quantities of biomethane even in weak years. To unlock the potential, the outcomes should be evaluated and discussed further with stakeholders in the identified priority regions.
Peat Substitution in Horticulture: Interviews with German Growing Media Producers on the Transformation of the Resource Base
Peat is the major constituent of horticultural growing media. Due to its high climate footprint, its extraction and use are controversial and the need to limit its use is widely recognised. The Peat Use Reduction Strategy of the German government aims to phase out its use and replace it with renewable materials. Despite large potential, stakeholders consider the availability of peat substitutes in sufficient quantity and quality as a critical issue. The goal of this research is to systematically investigate the challenges and opportunities for substituting peat in the resource base of the growing media industry. Based on deep-dive interviews with German growing media producers, the factors determining the supply and use of the main growing media constituents—peat, green compost, wood fibres, composted bark and coir products—were analysed. The results show the critical role of the processing infrastructure on transportation distances and the quality and quantity of the market supply. Additionally, competition with other sectors affects the availability of materials for the growing media industry. Moreover, peat is still economically advantageous compared with its substitutes. Even if this advantage declines due to consumer awareness and the end of domestic extraction, the end of peat use would probably imply new policy measures.
Modelling assessment of resource competition for renewable basic chemicals and the effect of recycling
This work assesses pathways towards a net‐zero greenhouse gas (GHG) emissions chemical industry sector in Germany until 2050, focusing on the ammonia, methanol, ethylene and adipic acid subsectors and the effect of the recycling of C embedded in chemical end products on the GHG abatement cost and primary resource demand. This was done using a bottom‐up mathematical optimization model, including the energy sectors and the chemicals sector, with electricity and biobased options considered. Results show that net‐zero GHG emissions for the considered chemicals in 2050 are attainable at a marginal cost of 640–900 €/tCO2‐eq, even with 26%–36% of demand being satisfied by fossil production routes. This is possible because renewable organic chemicals can act as carbon sinks if, at their end of life, C is permanently stored via landfilling or passed on to the next value chain via recycling. Nonetheless, considering the cost implications, the practical deployment of renewable chemicals is a challenge. The considered renewable chemicals cost 1.3–8 times more than their fossil counterparts, resulting in a marginal CO2 price of 480 €/tCO2‐eq when all primary resources (energy crops, forest residues and renewable electricity) are considered, or 810 €/tCO2‐eq when the availability of arable land is restricted. In the transition to net‐zero emissions for the chemicals under study, a circular economy is important not only for reducing demand for primary resources as is typically the case but also reduces GHG abatement costs by 13%–24% through carbon capture and utilization effects. This work assesses the potential contributions of biomass and renewable H2 resources towards a net‐zero greenhouse gas (GHG) emissions for the German chemical industry until 2050, in competition with the energy sector. This was done using a bottom‐up mathematical optimization model, with the objective of allocating primary resources to the power, heat, transport and chemicals sectors in a GHG abatement cost‐optimal manner. The work concludes that a net‐zero emissions chemicals sector can be attained at a high CO2‐price of 480–810 €/tCO2 and that the recycling of chemical end products at their end of life is critical to reducing abatement costs.
A bottom–up regional potential assessment of bioenergy with carbon capture and storage in Germany
Bioenergy with Carbon Capture and Storage (BECCS) is a bio-based Carbon Dioxide Removal Technology (CDR) undergoing detailed and comprehensive screening in many countries. The latest scientific reports emphasized that net-zero targets can not be achieved globally or nationally without deploying such technologies. Germany aims to achieve carbon neutrality by 2045, and negative emissions thereafter, which means a higher demand for CDRs. Despite BECCS being the building block of net-zero policies, its implementation on a national and regional scale presents serious challenges. Therefore, in this study, we analyze the role of BECCS in the German bioenergy system with a spatially detailed bottom–up optimization model that accounts for techno-economics and political aspects of BECCS (e.g. availability of biomass and investment costs). Our analysis demonstrates that BECCS can remove almost 61 Mt CO2 in 2050; however, the outcomes demonstrate sensitivity toward CO2 credit and CO2 prices, which can raise the removal as high as 69 Mt CO2. Additionally, results suggest that removing enough CO2 to achieve carbon neutrality in Germany by 2045 solely through BECCS seems extremely challenging; thus, a portfolio of negative emission technologies will be necessary to contribute. Our findings provide a better understanding of BECCS feasibility and its potential to assist us in achieving climate targets in Germany. Although we apply our model to Germany, the developed tool and insights are generic and can be applied to other countries.
Flexible Biogas in Future Energy Systems—Sleeping Beauty for a Cheaper Power Generation
The increasing proportion of intermittent renewable energies asks for further technologies for balancing demand and supply in the energy system. In contrast to other countries, Germany is characterized by a high installed capacity of dispatchable biogas plants. For this paper, we analyzed the total system costs varying biogas extension paths and modes of operation for the period of 2016–2035 by using a non-linear optimization model. We took variable costs of existing conventional power plants, as well as variable costs and capital investments in gas turbines, Li-ion batteries, and pumped-storage plants into account. Without the consideration of the costs for biogas plants, an increasing proportion of biogas plants, compared to their phase out, reduces the total system costs. Furthermore, their flexible power generation should be as flexible as possible. The lowest total system costs were calculated in an extension path with the highest rate of construction of new biogas plants. However, the highest marginal utility was assessed by a medium proportion of flexible biogas plants. In conclusion, biogas plants can be a cost-effective option to integrate intermittent renewable energies into the electricity system. The optimal extension path of biogas plants depends on the future installed capacities of conventional and renewable energies.