Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
56 result(s) for "Tsuji, Kunikazu"
Sort by:
Effects of Different Cell-Detaching Methods on the Viability and Cell Surface Antigen Expression of Synovial Mesenchymal Stem Cells
Flow cytometric analysis of cell surface antigens is a powerful tool for the isolation and characterization of stem cells residing in adult tissues. In contrast to the collection of hematopoietic stem cells, the process of enzymatic digestion is usually necessary to prepare mesenchymal stem cells (MSCs) suspensions, which can influence the expression of cell surface markers. In this study, we examined the effects of various cell-detaching reagents and digestion times on the expression of stem cell-related surface antigens and MSC functions. Human MSCs were detached from dishes using four different reagents: trypsin, TrypLE, collagenase, and a non enzymatic cell dissociation reagent (C5789; Sigma-Aldrich). Following dissociation reagent incubations ranging from 5 to 120 min, cell surface markers were analyzed by flow cytometry. Trypsin and TrypLE quickly dissociated the cells within 5 min, while collagenase and C5789 required 60 min to obtain maximum cell yields. C5789 significantly decreased cell viability at 120 min. Trypsin treatment significantly reduced CD44+, CD55+, CD73+, CD105+, CD140a+, CD140b+, and CD201+ cell numbers within 30 min. Collagenase treatment reduced CD140a expression by 30 min. In contrast, TrypLE treatment did not affect the expression of any cell surface antigens tested by 30 min. Despite the significant loss of surface antigen expression after 60 min of treatment with trypsin, adverse effects of enzymatic digestion on multipotency of MSCs were limited. Overall, our data indicated that TrypLE is advantageous over other cell dissociation reagents tested for the rapid preparation of viable MSC suspensions.
Mesenchymal Stem Cells in Synovial Fluid Increase After Meniscus Injury
Background Although relatively uncommon, spontaneous healing from a meniscus injury has been observed even within the avascular area. This may be the result of the existence of mesenchymal stem cells in synovial fluid. Questions/purposes The purpose of this study was to investigate whether mesenchymal stem cells existed in the synovial fluid of the knee after meniscus injury. Methods Synovial fluid was obtained from the knees of 22 patients with meniscus injury just before meniscus surgery and from 8 volunteers who had no history of knee injury. The cellular fraction of the synovial fluid was cultured for 14 days followed by analysis for multilineage potential and presentation of surface antigens characteristic of mesenchymal stem cells. Colony-forming efficiency and proliferation potential were also compared between the two groups. Results Cells with characteristics of mesenchymal stem cells were observed in the synovial fluid of injured knees to a much greater degree than in uninjured knees. The colony-forming cells derived from the synovial fluid of the knee with meniscus injury had multipotentiality and surface epitopes identical to mesenchymal stem cells. The average number of colony formation, obtained from 1 mL of synovial fluid, in meniscus-injured knees was 250, higher than that from healthy volunteers, which was 0.5 (p < 0.001). Total colony number per synovial fluid volume was positively correlated with the postinjury period (r = 0.77, p < 0.001). Conclusions Mesenchymal stem cells were found to exist in synovial fluid from knees after meniscus injury. Mesenchymal stem cells were present in higher numbers in synovial fluid with meniscus injury than in normal knees. Total colony number per synovial fluid volume was positively correlated with the postinjury period. Clinical Relevance Our current human study and previous animal studies suggest the possibility that mesenchymal stem cells in synovial fluid increase after meniscus injury contributing to spontaneous meniscus healing.
Canine mesenchymal stem cells from synovium have a higher chondrogenic potential than those from infrapatellar fat pad, adipose tissue, and bone marrow
Osteoarthritis (OA), a common chronic joint disorder in both humans and canines, is characterized by a progressive loss of articular cartilage. Canines can serve as an animal model of OA for human medicine, and this research can simultaneously establish effective veterinary treatments for canine OA. One attractive treatment that can lead to cartilage regeneration is the use of mesenchymal stem cells (MSCs). However, for canine OA, little information is available regarding the best source of MSCs. The purpose of this study was to identify a promising MSC source for canine cartilage regeneration. We collected synovial, infrapatellar fat pad, inguinal adipose, and bone marrow tissues from six canines and then conducted a donor-matched comparison of the properties of MSCs derived from these four tissues. We examined the surface epitope expression, proliferation capacity, and trilineage differentiation potential of all four populations. Adherent cells derived from all four tissue sources exhibited positivity for CD90 and CD44 and negativity for CD45 and CD11b. The positive rate for CD90 was higher for synovium-derived than for adipose-derived and bone marrow-derived MSCs. Synovium-derived and infrapatellar fat pad-derived MSCs displayed substantial proliferation ability, and all four populations underwent trilineage differentiation. During chondrogenesis, the wet weight was heavier for cartilage pellets derived from synovium MSCs than from the other three sources. The synovium is therefore a promising source for MSCs for canine cartilage regeneration. Our findings provide useful information about canine MSCs that may be applicable to regenerative medicine for treatment of OA.
Hyperbaric oxygen reduces inflammation, oxygenates injured muscle, and regenerates skeletal muscle via macrophage and satellite cell activation
Hyperbaric oxygen treatment (HBO) promotes rapid recovery from soft tissue injuries. However, the healing mechanism is unclear. Here we assessed the effects of HBO on contused calf muscles in a rat skeletal muscle injury model. An experimental HBO chamber was developed and rats were treated with 100% oxygen, 2.5 atmospheres absolute for 2 h/day after injury. HBO reduced early lower limb volume and muscle wet weight in contused muscles, and promoted muscle isometric strength 7 days after injury. HBO suppressed the elevation of circulating macrophages in the acute phase and then accelerated macrophage invasion into the contused muscle. This environment also increased the number of proliferating and differentiating satellite cells and the amount of regenerated muscle fibers. In the early phase after injury, HBO stimulated the IL-6/STAT3 pathway in contused muscles. Our results demonstrate that HBO has a dual role in decreasing inflammation and accelerating myogenesis in muscle contusion injuries.
High molecular weight hyaluronic acid alleviates ovariectomy-induced bone loss in mice
Background The rapid decline in ovarian function associated with menopause promotes osteoclast differentiation and increases bone resorption, disrupting of bone homeostasis and increasing the risk of osteoporosis. Hyaluronic acid (HA) is a polysaccharide ubiquitously present in the connective tissues. Recent reports indicate that high-molecular-weight HA (HMW-HA) promotes osteoblast proliferation, enhances alkaline phosphatase activity and mineral deposition, and promotes the expression of bone differentiation markers, such as Runx2 and osteocalcin. HMW-HA also inhibits the expression of the receptor activator of nuclear factor kappa-B ligand (RANKL) in osteoblasts. These results suggest that HMW-HA may be an effective therapeutic agent against postmenopausal osteoporosis. Therefore, this study aimed to examine whether HMW-HA alleviates ovariectomy (OVX)-induced bone loss in mice. Methods Eight-week-old female C57BL/6 J mice were randomly divided into the following five groups: Group 1: Sham/saline, Group 2: OVX/saline, Group 3: OVX/HMW-HA [15 mg/kg]; Group 4: OVX/HMW-HA [30 mg/kg]; and Group 5: OVX/HMW-HA [60 mg/kg]. Mice were administered HMW-HA or saline subcutaneously starting from 1 week after OVX and changes in bone mass were analyzed at 5 weeks using three-dimensional micro-computed tomography (3D-μCT). In addition, changes in osteoclast parameters were analyzed histologically. Results The reduction in trabecular bone volume and trabecular number was significantly ameliorated in the OVX/HMW-HA group compared with that observed in the OVX/saline group, along with a significant inhibition of the increase in trabecular spacing. In addition, the OVX/HMW-HA group exhibited a significant reduction in osteoclast surface area and number compared with the OVX/saline group, with no significant differences compared with the sham group. In vitro experiments revealed that depletion of HMW-HA from the culture medium by hyaluronidase treatment increased RANKL expression in the bone marrow stromal cell line ST2. These data suggest that HMW-HA alleviates OVX-induced bone loss by downregulating osteoclast formation and/or activity in mice. Conclusion HMW-HA is a potential novel therapeutic agent for osteoporosis.
Characteristics of the synovial microenvironment and synovial mesenchymal stem cells with hip osteoarthritis of different bone morphologies
Background Variations in bone morphology in patients with hip osteoarthritis (HOA) can be broadly categorized into three types: atrophic, normotrophic, and hypertrophic. Despite the investigations examining clinical elements, such as bone morphology, pain, and range of motion, our understanding of the pathogenesis of HOA remains limited. Previous studies have suggested that osteophytes typically originate at the interface of the joint cartilage, periosteum, and synovium, potentially implicating synovial mesenchymal stem cells (SMSCs) in the process. This study aimed to investigate the potential factors that drive the development of bone morphological features in HOA by investigating the characteristics of the synovium, differentiation potential of SMSCs, and composition of synovial fluid in different types of HOA. Methods Synovial tissue and fluid were collected from 30 patients who underwent total hip arthroplasty (THA) with the variable bone morphology of HOA patients. RNA sequencing analysis and quantitative reverse transcription-polymerase chain reaction (RT-qPCR) were performed to analyse the genes in the normotrophic and hypertrophic synovial tissue. SMSCs were isolated and cultured from the normotrophic and hypertrophic synovial tissues of each hip joint in accordance with the variable bone morphology of HOA patients. Cell differentiation potential was compared using differentiation and colony-forming unit assays. Cytokine array was performed to analyse the protein expression in the synovial fluid. Results In the RNA sequencing analysis, 103 differentially expressed genes (DEGs) were identified, predominantly related to the interleukin 17 (IL-17) signalling pathway. Using a protein–protein interaction (PPI) network, 20 hub genes were identified, including MYC , CXCL8 , ATF3 , NR4A1 , ZC3H12A , NR4A2 , FOSB , and FOSL1 . Among these hub genes, four belonged to the AP-1 family. There were no significant differences in the tri-lineage differentiation potential and colony-forming capacity of SMSCs. However, RT-qPCR revealed elevated SOX9 expression levels in synovial tissues from the hypertrophic group. The cytokine array demonstrated significantly higher levels of CXCL8, MMP9, and VEGF in the synovial fluid of the hypertrophic group than in the normotrophic group, with CXCL8 and MMP9 being significantly expressed in the hypertrophic synovium. Conclusion Upregulation of AP-1 family genes in the synovium and increased concentrations of CXCL8, MMP9, and VEGF were detected in the synovial fluid of the hypertrophic group of HOA patients, potentially stimulating the differentiation of SMSCs towards the cartilage and thereby contributing to severe osteophyte formation.
Thawed cryopreserved synovial mesenchymal stem cells show comparable effects to cultured cells in the inhibition of osteoarthritis progression in rats
Intra-articular injections of mesenchymal stem cells (MSCs) can inhibit the progression of osteoarthritis (OA). Previous reports have used cultured MSCs, but the ability to use thawed cryopreserved MSC stocks would be highly advantageous. Our purpose was to elucidate whether thawed cryopreserved MSCs show comparable inhibitory effects on OA progression in rats to those obtained with cultured MSCs. Cultured rat synovial MSCs or thawed MSCs were compared for in vitro viability and properties. The inhibitory effect of thawed MSCs on OA progression was evaluated by injecting cryopreservation fluid and thawed MSCs in meniscectomized rats. Cartilage degeneration was assessed using gross finding and histological scores. Cultured MSCs were then injected into one knee and thawed MSCs into the contralateral knee of the same individual to compare their effects. Cultured MSCs and MSCs thawed after cryopreservation had comparable in vitro colony formation and chondrogenic potentials. In the rat OA model, the gross finding and histological scores were significantly lower in the thawed MSC group than in the cryopreservation fluid group at 8 weeks. Finally, cartilage degeneration did not differ significantly after injection of cultured and thawed MSCs. In conclusion, thawed MSCs showed comparable inhibitory effects on OA progression to cultured MSCs.
SIRT6-PAI-1 axis is a promising therapeutic target in aging-related bone metabolic disruption
The mechanistic regulation of bone mass in aged animals is poorly understood. In this study, we examined the role of SIRT6, a longevity-associated factor, in osteocytes, using mice lacking Sirt6 in Dmp-1 -expressing cells (cKO mice) and the MLO-Y4 osteocyte-like cell line. cKO mice exhibited increased osteocytic expression of Sost, Fgf23 and senescence inducing gene Pai-1 and the senescence markers p16 and Il-6 , decreased serum phosphate levels, and low-turnover osteopenia. The cKO phenotype was reversed in mice that were a cross of PAI-1-null mice with cKO mice. Furthermore, senescence induction in MLO-Y4 cells increased the Fgf23 and Sost mRNA expression. Sirt6 knockout and senescence induction increased HIF-1α binding to the Fgf23 enhancer sequence. Bone mass and serum phosphate levels were higher in PAI-1-null aged mice than in wild-type mice. Therefore, SIRT6 agonists or PAI-1 inhibitors may be promising therapeutic options for aging-related bone metabolism disruptions.
BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing
Adult bones have a notable regenerative capacity. Over 40 years ago, an intrinsic activity capable of initiating this reparative response was found to reside within bone itself, and the term bone morphogenetic protein 1 (BMP) was coined to describe the molecules responsible for it. A family of BMP proteins was subsequently identified 2 , 3 , 4 , but no individual BMP has been shown to be the initiator of the endogenous bone repair response. Here we demonstrate that BMP2 is a necessary component of the signaling cascade that governs fracture repair. Mice lacking the ability to produce BMP2 in their limb bones have spontaneous fractures that do not resolve with time. In fact, in bones lacking BMP2, the earliest steps of fracture healing seem to be blocked. Although other osteogenic stimuli are still present in the limb skeleton of BMP2-deficient mice, they cannot compensate for the absence of BMP2. Collectively, our results identify BMP2 as an endogenous mediator necessary for fracture repair.
A novel methodology utilizing microchip implants to monitor individual activity and body temperature for assessing knee pain in group-housed rats
The pain assessment in animals is challenging as they cannot verbally express the site and severity of pain. In this study, we tried a small implantable actimeter, “Nanotag”, to monitor spontaneous locomotor activity and body temperature in animals suffering from a chemical-induced rat knee arthritis as compared to naïve and steroid-treated rats. Nanotag could detect the decrease in locomotor activity quickly after the arthritis induction and anti-inflammation analgesic treatment by intra-articular injection of steroid significantly improved locomotor activity. These changes were in the same line with those of a conventional knee pain evaluation method (incapacitance test). Nanotag can be utilized as the non-interventional, continuous, and completely objective monitoring the amount of pain in rat knee arthritis model. This traditional yet innovative method may be universally applicable to various pain models and species, making it a worthwhile device for research across diverse fields.