Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
57
result(s) for
"Tucci, Valter"
Sort by:
Genomic Imprinting: A New Epigenetic Perspective of Sleep Regulation
2016
[...]sleep loss disrupts the circadian rhythm in 20% of the oscillating genes in the brain [2] and affects the DNA binding of clock genes by acting on the methylation state of their promoters [3]. [...]significant methylation changes have recently been reported in mice when their sleep-wake cycles are manipulated starting in the early stages of development after birth [4]. Sleep is the most substantial state during development (i.e., it occupies two-thirds of the day in newborns) and plays a fundamental role in developmental processes; furthermore, genomic imprinting is crucial for growth, development, and neurogenesis [10,48]. [...]investigations focusing on the interplay between sleep and specific developmental genomic imprinting mechanisms may reveal important new avenues for investigating the neurodevelopmental mechanisms of sleep.
Journal Article
The development of synaptic transmission is time-locked to early social behaviors in rats
by
Balzani, Edoardo
,
Cwetsch, Andrzej W.
,
Tucci, Valter
in
42/109
,
631/136/334/1874/486
,
631/378
2019
The development of functional synapses is a sequential process preserved across many brain areas. Here, we show that glutamatergic postsynaptic currents anticipated GABAergic currents in Layer II/III of the rat neocortex, in contrast to the pattern described for other brain areas. The frequencies of both glutamatergic and GABAergic currents increased abruptly at the beginning of the second postnatal week, supported by a serotonin upsurge. Integrative behaviors arose on postnatal day (P)9, while most motor and sensory behaviors, which are fundamental for pup survival, were already in place at approximately P7. A reduction in serotonin reuptake accelerated the development of functional synapses and integrative huddling behavior, while sparing motor and sensory function development. A decrease in synaptic transmission in Layer II/III induced by a chemogenetic approach only inhibited huddling. Thus, precise developmental sequences mediate early, socially directed behaviors for which neurotransmission and its modulation in supragranular cortical layers play key roles.
The development of functional synapses is a key milestone in neurodevelopment. Here, the authors show how serotonin signalling coordinates development of glutamatergic and GABAergic currents and triggers the emergence of integrative behavior (huddling) in rat pups.
Journal Article
An approach to monitoring home-cage behavior in mice that facilitates data sharing
2018
Genetically modified mice are used as models for a variety of human behavioral conditions. However, behavioral phenotyping can be a major bottleneck in mouse genetics because many of the classic protocols are too long and/or are vulnerable to unaccountable sources of variance, leading to inconsistent results between centers. We developed a home-cage approach using a Chora feeder that is controlled by--and sends data to--software. In this approach, mice are tested in the standard cages in which they are held for husbandry, which removes confounding variables such as the stress induced by out-of-cage testing. This system increases the throughput of data gathering from individual animals and facilitates data mining by offering new opportunities for multimodal data comparisons. In this protocol, we use a simple work-for-food testing strategy as an example application, but the approach can be adapted for other experiments looking at, e.g., attention, decision-making or memory. The spontaneous behavioral activity of mice in performing the behavioral task can be monitored 24 h a day for several days, providing an integrated assessment of the circadian profiles of different behaviors. We developed a Python-based open-source analytical platform (Phenopy) that is accessible to scientists with no programming background and can be used to design and control such experiments, as well as to collect and share data. This approach is suitable for large-scale studies involving multiple laboratories.
Journal Article
Layer-specific excitatory circuits differentially control recurrent network dynamics in the neocortex
by
Tucci, Valter
,
Dal Maschio, Marco
,
Farisello, Pasqualina
in
631/378/1697
,
631/378/1697/2601
,
Action Potentials - physiology
2013
This study uses optogenetics
in vivo
in mice to provide causal evidence for the distinct roles played by different cortical layers in the regulation of intrinsic oscillations.
In the absence of external stimuli, the mammalian neocortex shows intrinsic network oscillations. These dynamics are characterized by translaminar assemblies of neurons whose activity synchronizes rhythmically in space and time. How different cortical layers influence the formation of these spontaneous cellular assemblies is poorly understood. We found that excitatory neurons in supragranular and infragranular layers have distinct roles in the regulation of intrinsic low-frequency oscillations in mice
in vivo
. Optogenetic activation of infragranular neurons generated network activity that resembled spontaneous events, whereas photoinhibition of these same neurons substantially attenuated slow ongoing dynamics. In contrast, light activation and inhibition of supragranular cells had modest effects on spontaneous slow activity. This study represents, to the best of our knowledge, the first causal demonstration that excitatory circuits located in distinct cortical layers differentially control spontaneous low-frequency dynamics.
Journal Article
Improved cognitive performance in trace amine-associated receptor 5 (TAAR5) knock-out mice
2022
Trace amine-associated receptors (TAARs) are a family of G protein-coupled receptors present in mammals in the brain and several peripheral organs. Apart from its olfactory role, TAAR5 is expressed in the major limbic brain areas and regulates brain serotonin functions and emotional behaviours. However, most of its functions remain undiscovered. Given the role of serotonin and limbic regions in some aspects of cognition, we used a temporal decision-making task to unveil a possible role of TAAR5 in cognitive processes. We found that TAAR5 knock-out mice showed a generally better performance due to a reduced number of errors and displayed a greater rate of improvement at the task than WT littermates. However, task-related parameters, such as time accuracy and uncertainty have not changed significantly. Overall, we show that TAAR5 modulates specific domains of cognition, highlighting a new role in brain physiology.
Journal Article
Paternal Aging Affects Behavior in Pax6 Mutant Mice: A Gene/Environment Interaction in Understanding Neurodevelopmental Disorders
2016
Neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit and hyperactivity disorder (ADHD) have increased over the last few decades. These neurodevelopmental disorders are characterized by a complex etiology, which involves multiple genes and gene-environmental interactions. Various genes that control specific properties of neural development exert pivotal roles in the occurrence and severity of phenotypes associated with neurodevelopmental disorders. Moreover, paternal aging has been reported as one of the factors that contribute to the risk of ASD and ADHD. Here we report, for the first time, that paternal aging has profound effects on the onset of behavioral abnormalities in mice carrying a mutation of Pax6, a gene with neurodevelopmental regulatory functions. We adopted an in vitro fertilization approach to restrict the influence of additional factors. Comprehensive behavioral analyses were performed in Sey/+ mice (i.e., Pax6 mutant heterozygotes) born from in vitro fertilization of sperm taken from young or aged Sey/+ fathers. No body weight changes were found in the four groups, i.e., Sey/+ and wild type (WT) mice born to young or aged father. However, we found important differences in maternal separation-induced ultrasonic vocalizations of Sey/+ mice born from young father and in the level of hyperactivity of Sey/+ mice born from aged fathers in the open-field test, respectively, compared to WT littermates. Phenotypes of anxiety were observed in both genotypes born from aged fathers compared with those born from young fathers. No significant difference was found in social behavior and sensorimotor gating among the four groups. These results indicate that mice with a single genetic risk factor can develop different phenotypes depending on the paternal age. Our study advocates for serious considerations on the role of paternal aging in breeding strategies for animal studies.
Journal Article
Working-for-Food Behaviors: A Preclinical Study in Prader-Willi Mutant Mice
by
Balzani, Edoardo
,
Tucci, Valter
,
Maggi, Silvia
in
Animal cognition
,
Animals
,
Behavioral biology
2016
Abnormal feeding behavior is one of the main symptoms of Prader-Willi syndrome (PWS). By studying a PWS mouse mutant line, which carries a paternally inherited deletion of the small nucleolar RNA 116 (Snord116), we observed significant changes in working-for-food behavioral responses at various timescales. In particular, we report that PWS mutant mice show a significant delay compared to wild-type littermate controls in responding to both hour-scale and seconds-to-minutes-scale time intervals. This timing shift in mutant mice is associated with better performance in the working-for-food task, and results in better decision making in these mutant mice. The results of our study reveal a novel aspect of the organization of feeding behavior, and advance the understanding of the interplay between the metabolic functions and cognitive mechanisms of PWS.
Journal Article
Monoallelic gene expression in developing cells increases genetic noise and Shannon entropy
2025
Monoallelic gene expression is a pivotal phenomenon in developmental biology, notably through the influence of imprinted genes. Our model predicts that monoallelic expression generates expression variability, which we assess by measuring genetic noise and entropy within Shannon’s information theory framework. Analyzing single-cell allele-specific expression across human and mouse datasets, we consistently observe increased expression variability due to monoallelic expression, affecting both imprinted and co-expressed non-imprinted genes. Moreover, we find decreasing variability in developing neurons and increasing variability in glial cells. The discovery of distinct noise patterns in over 80% of analyzed genes between glial and neuronal populations highlights the importance of differential noise in neurodevelopmental processes. Given the critical role of imprinted genes in biological processes such as growth and brain development, disruptions in their expression might contribute to various disorders. Understanding the stochastic nature of monoallelic expression and its genome-wide impact offers new insights into the mechanisms underlying these pathologies.
Journal Article
A novel unsupervised analysis of electrophysiological signals reveals new sleep substages in mice
2018
Sleep science is entering a new era, thanks to new data-driven analysis approaches that, combined with mouse gene-editing technologies, show a promise in functional genomics and translational research. However, the investigation of sleep is time consuming and not suitable for large-scale phenotypic datasets, mainly due to the need for subjective manual annotations of electrophysiological states. Moreover, the heterogeneous nature of sleep, with all its physiological aspects, is not fully accounted for by the current system of sleep stage classification. In this study, we present a new data-driven analysis approach offering a plethora of novel features for the characterization of sleep. This novel approach allowed for identifying several substages of sleep that were hidden to standard analysis. For each of these substages, we report an independent set of homeostatic responses following sleep deprivation. By using our new substages classification, we have identified novel differences among various genetic backgrounds. Moreover, in a specific experiment with the Zfhx3 mouse line, a recent circadian mutant expressing both shortening of the circadian period and abnormal sleep architecture, we identified specific sleep states that account for genotypic differences at specific times of the day. These results add a further level of interaction between circadian clock and sleep homeostasis and indicate that dissecting sleep in multiple states is physiologically relevant and can lead to the discovery of new links between sleep phenotypes and genetic determinants. Therefore, our approach has the potential to significantly enhance the understanding of sleep physiology through the study of single mutations. Moreover, this study paves the way to systematic high-throughput analyses of sleep.
Journal Article
Cognitive Aging in Zebrafish
by
Tucci, Valter
,
Zhdanova, Irina V.
,
Kishi, Shuji
in
Acetylcholinesterase - genetics
,
Acetylcholinesterase - metabolism
,
Adults
2006
Age-related impairments in cognitive functions represent a growing clinical and social issue. Genetic and behavioral characterization of animal models can provide critical information on the intrinsic and environmental factors that determine the deterioration or preservation of cognitive abilities throughout life.
Behavior of wild-type, mutant and gamma-irradiated zebrafish (Danio rerio) was documented using image-analysis technique. Conditioned responses to spatial, visual and temporal cues were investigated in young, middle-aged and old animals. The results demonstrate that zebrafish aging is associated with changes in cognitive responses to emotionally positive and negative experiences, reduced generalization of adaptive associations, increased stereotypic and reduced exploratory behavior and altered temporal entrainment. Genetic upregulation of cholinergic transmission attenuates cognitive decline in middle-aged achesb55/+ mutants, compared to wild-type siblings. In contrast, the genotoxic stress of gamma-irradiation accelerates the onset of cognitive impairment in young zebrafish.
These findings would allow the use of powerful molecular biological resources accumulated in the zebrafish field to address the mechanisms of cognitive senescence, and promote the search for therapeutic strategies which may attenuate age-related cognitive decline.
Journal Article