Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
327 result(s) for "Turner, Nicholas C."
Sort by:
The history and future of targeting cyclin-dependent kinases in cancer therapy
Key Points Cyclin-dependant kinase 4 (CDK4) and CDK6 phosphorylate the tumour suppressor retinoblastoma protein (RB), resulting in the release of the E2F transcription factor and progression through the cell cycle. CDK4 and CDK6 are positively regulated by D-type cyclins (that is, cyclin D1, cyclin D2 and cyclin D3) and negatively regulated by inhibitor of CDK4 (INK4) proteins. In cancer, the CDK4/CDK6–RB–p16 INK4A pathway is dysregulated through various mechanisms, including loss of p16 INK4A , loss of RB, overexpression of cyclin D1 or of CDK4 and CDK6. Clinical trials with pan-CDK inhibitors, such as flavopiridol, have demonstrated low levels of clinical activity and drug target selectivity. The reasons for their failure in the clinic include the absence of clear biomarkers for response and the lack of a clear therapeutic window. The selective CDK4 and CDK6 inhibitors palbociclib, LEE011 and abemaciclib induce G1 cell cycle arrest both in vitro and in vivo in RB-proficient models. Preclinical activity has been reported in multiple tumour types, including breast cancer, sarcoma, melanoma and mantle cell lymphoma. The PALOMA-1 Phase II clinical trial randomized 165 women with advanced oestrogen receptor (ER)-positive breast cancer into two treatment groups: the aromatase inhibitor letrozole alone versus letrozole plus palbociclib. There was a significant improvement of 10 months in median progression-free survival with letrozole plus palbociclib compared with letrozole alone Neutropaenia is the principal drug-limiting toxicity for the selective CDK4 and CDK6 inhibitors palbociclib and LEE011. Abemaciclib has demonstrated more prominent gastrointestinal-associated toxicity. Loss of RB and higher levels of p16 INK4A are markers of resistance to selective CDK4 and CDK6 inhibitors. Further evaluation of predictive biomarkers across tumour types is required. Components of the cell cycle machinery, such as the cyclin-dependent kinases (CDKs), have long been pursued as anticancer targets. Historically, the development of CDK inhibitors has been challenging, but recent developments, particularly in regard to inhibitors for CDK4 and CDK6, have shown promise. This Review presents an overview of the field and discusses agents in clinical development. Cancer represents a pathological manifestation of uncontrolled cell division; therefore, it has long been anticipated that our understanding of the basic principles of cell cycle control would result in effective cancer therapies. In particular, cyclin-dependent kinases (CDKs) that promote transition through the cell cycle were expected to be key therapeutic targets because many tumorigenic events ultimately drive proliferation by impinging on CDK4 or CDK6 complexes in the G1 phase of the cell cycle. Moreover, perturbations in chromosomal stability and aspects of S phase and G2/M control mediated by CDK2 and CDK1 are pivotal tumorigenic events. Translating this knowledge into successful clinical development of CDK inhibitors has historically been challenging, and numerous CDK inhibitors have demonstrated disappointing results in clinical trials. Here, we review the biology of CDKs, the rationale for therapeutically targeting discrete kinase complexes and historical clinical results of CDK inhibitors. We also discuss how CDK inhibitors with high selectivity (particularly for both CDK4 and CDK6), in combination with patient stratification, have resulted in more substantial clinical activity.
Advances in the treatment of advanced oestrogen-receptor-positive breast cancer
Oestrogen-receptor-positive breast cancer is the most common subtype of breast cancer. Endocrine therapies that target the dependence of this subtype on the oestrogen receptor have substantial activity, yet the development of resistance to therapy is inevitable in advanced cancer. Major progress has been made in identifying the drivers of oestrogen-receptor-positive breast cancer and the mechanisms of resistance to endocrine therapy. This progress has translated into major advances in the treatment of advanced breast cancer, with several targeted therapies that enhance the efficacy of endocrine therapy; inhibitors of mTOR and inhibitors of the cyclin-dependent kinases CDK4 and CDK6 substantially improve progression-free survival. A new wave of targeted therapies is being developed, including inhibitors of PI3K, AKT, and HER2, and a new generation of oestrogen-receptor degraders. Considerable challenges remain in patient selection, deciding on the most appropriate order in which to administer therapies, and establishing whether cross-resistance occurs between therapies.
Capivasertib in Hormone Receptor–Positive Advanced Breast Cancer
Among persons with breast cancer previously treated with hormonal therapy, the AKT pathway inhibitor capivasertib when added to fulvestrant significantly prolonged progression-free survival as compared with fulvestrant alone.
Genetic heterogeneity and cancer drug resistance
Despite the success of targeted therapies in the treatment of cancer, the development of resistance limits the ability to translate this method into a curative treatment. The mechanisms of resistance have traditionally been thought of as intrinsic (ie, present at baseline) or acquired (ie, developed after initial response). Recent evidence has challenged the notion of acquired resistance. Although cancers are traditionally thought to be clonal, there is now evidence of intra-tumour genetic heterogeneity in most cancers. The clinical pattern of acquired resistance in many circumstances represents outgrowth of resistant clones that might have originally been present in the primary cancer at low frequency but that have expanded under the selective pressure imposed by targeted therapies. Here, we describe the potential role of clonal heterogeneity in resistance to targeted therapy, discuss genetic instability as one of its causes, and detail approaches to tackle intra-tumour heterogeneity in the clinic.
Early circulating tumor DNA dynamics and clonal selection with palbociclib and fulvestrant for breast cancer
CDK4/6 inhibition substantially improves progression-free survival (PFS) for women with advanced estrogen receptor-positive breast cancer, although there are no predictive biomarkers. Early changes in circulating tumor DNA (ctDNA) level may provide early response prediction, but the impact of tumor heterogeneity is unknown. Here we use plasma samples from patients in the randomized phase III PALOMA-3 study of CDK4/6 inhibitor palbociclib and fulvestrant for women with advanced breast cancer and show that relative change in PIK3CA ctDNA level after 15 days treatment strongly predicts PFS on palbociclib and fulvestrant (hazard ratio 3.94, log-rank p  = 0.0013). ESR1 mutations selected by prior hormone therapy are shown to be frequently sub clonal, with ESR1 ctDNA dynamics offering limited prediction of clinical outcome. These results suggest that early ctDNA dynamics may provide a robust biomarker for CDK4/6 inhibitors, with early ctDNA dynamics demonstrating divergent response of tumor sub clones to treatment. Circulating tumor DNA (ctDNA) may provide a prediction of treatment response, but could be impacted by tumor heterogeneity. Here, the authors investigate ctDNA in CDK4/6 inhibitor treatment in advanced breast cancer, finding ctDNA levels predict progression-free survival and anticipate clonal selection.
Inavolisib-Based Therapy in PIK3CA-Mutated Advanced Breast Cancer
In PIK3CA -mutated, HR-positive, HER2-negative locally advanced or metastatic breast cancer, inavolisib plus palbociclib–fulvestrant led to significantly longer progression-free survival than placebo plus palbociclib–fulvestrant.
Palbociclib in Hormone-Receptor–Positive Advanced Breast Cancer
In women with hormone-receptor–positive metastatic breast cancer that had progressed after endocrine therapy, palbociclib plus fulvestrant was associated with progression-free survival of more than 9 months, as compared with less than 4 months with fulvestrant alone. Approximately 80% of breast cancers express estrogen receptors, progesterone receptors, or both. Endocrine therapies are the mainstay of treatment for these hormone-receptor–positive cancers, substantially reducing the relapse rate after presentation with early-stage cancer. 1 Despite advances in endocrine therapy, many women have a relapse during or after completing adjuvant therapy. The care of these women remains a considerable clinical challenge. Single-agent treatment with an aromatase inhibitor or tamoxifen has shown limited clinical benefit. 2 , 3 The selective estrogen-receptor degrader fulvestrant has modest activity in this population of patients, 4 , 5 and the development of effective therapies that can reverse resistance to endocrine therapy . . .
Optimal targeting of PI3K-AKT and mTOR in advanced oestrogen receptor-positive breast cancer
The growing availability of targeted therapies for patients with advanced oestrogen receptor-positive breast cancer has improved survival, but there remains much to learn about the optimal management of these patients. The PI3K–AKT and mTOR pathways are among the most commonly activated pathways in breast cancer, whose crucial role in the pathogenesis of this tumour type has spurred major efforts to target this pathway at specific kinase hubs. Approvals for oestrogen receptor-positive advanced breast cancer include the PI3K inhibitor alpelisib for PIK3CA-mutated tumours, the AKT inhibitor capivasertib for tumours with alterations in PIK3CA, AKT1, or PTEN, and the mTOR inhibitor everolimus, which is used irrespective of mutation status. The availability of different inhibitors leaves physicians with a potentially challenging decision over which of these therapies should be used for individual patients and when. In this Review, we present a comprehensive summary of our current understanding of the pathways and the three inhibitors and discuss strategies for the optimal sequencing of therapies in the clinic, particularly after progression on a CDK4/6 inhibitor.
Homologous recombination DNA repair deficiency and PARP inhibition activity in primary triple negative breast cancer
Triple negative breast cancer (TNBC) encompasses molecularly different subgroups, with a subgroup harboring evidence of defective homologous recombination (HR) DNA repair. Here, within a phase 2 window clinical trial, RIO trial (EudraCT 2014-003319-12), we investigate the activity of PARP inhibitors in 43 patients with untreated TNBC. The primary end point, decreased Ki67, occured in 12% of TNBC. In secondary end point analyses, HR deficiency was identified in 69% of TNBC with the mutational-signature-based HRDetect assay. Cancers with HRDetect mutational signatures of HR deficiency had a functional defect in HR, assessed by impaired RAD51 foci formation on end of treatment biopsy. Following rucaparib treatment there was no association of Ki67 change with HR deficiency. In contrast, early circulating tumor DNA dynamics identified activity of rucaparib, with end of treatment ctDNA levels suppressed by rucaparib in mutation-signature HR-deficient cancers. In ad hoc analysis, rucaparib induced expression of interferon response genes in HR-deficient cancers. The majority of TNBCs have a defect in DNA repair, identifiable by mutational signature analysis, that may be targetable with PARP inhibitors. Defects in homologous recombination (HR) are found in some triple negative breast cancers, suggesting they may be sensitive to PARP inhibitors. In this phase II clinical trial of the PARP inhibitor rucaparib, changes in Ki67 levels did not correlate with markers of HR deficiency but HR deficiency was detected in 69% of tumours, indicating that PARP inhibitors may be a useful treatment.
Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial
In the PALOMA-3 study, the combination of the CDK4 and CDK6 inhibitor palbociclib and fulvestrant was associated with significant improvements in progression-free survival compared with fulvestrant plus placebo in patients with metastatic breast cancer. Identification of patients most suitable for the addition of palbociclib to endocrine therapy after tumour recurrence is crucial for treatment optimisation in metastatic breast cancer. We aimed to confirm our earlier findings with this extended follow-up and show our results for subgroup and biomarker analyses. In this multicentre, double-blind, randomised phase 3 study, women aged 18 years or older with hormone-receptor-positive, HER2-negative metastatic breast cancer that had progressed on previous endocrine therapy were stratified by sensitivity to previous hormonal therapy, menopausal status, and presence of visceral metastasis at 144 centres in 17 countries. Eligible patients—ie, any menopausal status, Eastern Cooperative Oncology Group performance status 0–1, measurable disease or bone disease only, and disease relapse or progression after previous endocrine therapy for advanced disease during treatment or within 12 months of completion of adjuvant therapy—were randomly assigned (2:1) via a centralised interactive web-based and voice-based randomisation system to receive oral palbociclib (125 mg daily for 3 weeks followed by a week off over 28-day cycles) plus 500 mg fulvestrant (intramuscular injection on days 1 and 15 of cycle 1; then on day 1 of subsequent 28-day cycles) or placebo plus fulvestrant. The primary endpoint was investigator-assessed progression-free survival. Analysis was by intention to treat. We also assessed endocrine therapy resistance by clinical parameters, quantitative hormone-receptor expression, and tumour PIK3CA mutational status in circulating DNA at baseline. This study is registered with ClinicalTrials.gov, NCT01942135. Between Oct 7, 2013, and Aug 26, 2014, 521 patients were randomly assigned, 347 to fulvestrant plus palbociclib and 174 to fulvestrant plus placebo. Study enrolment is closed and overall survival follow-up is in progress. By March 16, 2015, 259 progression-free-survival events had occurred (145 in the fulvestrant plus palbociclib group and 114 in the fulvestrant plus placebo group); median follow-up was 8·9 months (IQR 8·7–9·2). Median progression-free survival was 9·5 months (95% CI 9·2–11·0) in the fulvestrant plus palbociclib group and 4·6 months (3·5–5·6) in the fulvestrant plus placebo group (hazard ratio 0·46, 95% CI 0·36–0·59, p<0·0001). Grade 3 or 4 adverse events occurred in 251 (73%) of 345 patients in the fulvestrant plus palbociclib group and 38 (22%) of 172 patients in the fulvestrant plus placebo group. The most common grade 3 or 4 adverse events were neutropenia (223 [65%] in the fulvestrant plus palbociclib group and one [1%] in the fulvestrant plus placebo group), anaemia (ten [3%] and three [2%]), and leucopenia (95 [28%] and two [1%]). Serious adverse events (all causalities) occurred in 44 patients (13%) of 345 in the fulvestrant plus palbociclib group and 30 (17%) of 172 patients in the fulvestrant plus placebo group. PIK3CA mutation was detected in the plasma DNA of 129 (33%) of 395 patients for whom these data were available. Neither PIK3CA status nor hormone-receptor expression level significantly affected treatment response. Fulvestrant plus palbociclib was associated with significant and consistent improvement in progression-free survival compared with fulvestrant plus placebo, irrespective of the degree of endocrine resistance, hormone-receptor expression level, and PIK3CA mutational status. The combination could be considered as a therapeutic option for patients with recurrent hormone-receptor-positive, HER2-negative metastatic breast cancer that has progressed on previous endocrine therapy. Pfizer.