Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
14 result(s) for "Veedin Rajan, Vinoth Babu"
Sort by:
Two light sensors decode moonlight versus sunlight to adjust a plastic circadian/circalunidian clock to moon phase
Many species synchronize their physiology and behavior to specific hours. It is commonly assumed that sunlight acts as the main entrainment signal for ∼24-h clocks. However, the moon provides similarly regular time information. Consistently, a growing number of studies have reported correlations between diel behavior and lunidian cycles. Yet, mechanistic insight into the possible influences of the moon on ∼24-h timers remains scarce. We have explored the marine bristleworm Platynereis dumerilii to investigate the role of moonlight in the timing of daily behavior. We uncover that moonlight, besides its role in monthly timing, also schedules the exact hour of nocturnal swarming onset to the nights’ darkest times. Our work reveals that extended moonlight impacts on a plastic clock that exhibits <24 h (moonlit) or >24 h (no moon) periodicity. Abundance, light sensitivity, and genetic requirement indicate that the Platynereis light receptor molecule r-Opsin1 serves as a receptor that senses moonrise, whereas the cryptochrome protein L-Cry is required to discriminate the proper valence of nocturnal light as either moonlight or sunlight. Comparative experiments in Drosophila suggest that cryptochrome’s principle requirement for light valence interpretation is conserved. Its exact biochemical properties differ, however, between species with dissimilar timing ecology. Our work advances the molecular understanding of lunar impact on fundamental rhythmic processes, including those of marine mass spawners endangered by anthropogenic change.
A Go-type opsin mediates the shadow reflex in the annelid Platynereis dumerilii
Background The presence of photoreceptive molecules outside the eye is widespread among animals, yet their functions in the periphery are less well understood. Marine organisms, such as annelid worms, exhibit a ‘shadow reflex’, a defensive withdrawal behaviour triggered by a decrease in illumination. Herein, we examine the cellular and molecular underpinnings of this response, identifying a role for a photoreceptor molecule of the G o -opsin class in the shadow response of the marine bristle worm Platynereis dumerilii. Results We found Pdu-Go-opsin1 expression in single specialised cells located in adult Platynereis head and trunk appendages, known as cirri. Using gene knock-out technology and ablation approaches, we show that the presence of Go-opsin1 and the cirri is necessary for the shadow reflex. Consistently, quantification of the shadow reflex reveals a chromatic dependence upon light of approximately 500 nm in wavelength, matching the photoexcitation characteristics of the Platynereis Go-opsin1. However, the loss of Go-opsin1 does not abolish the shadow reflex completely, suggesting the existence of a compensatory mechanism, possibly acting through a ciliary-type opsin, Pdu- c-opsin2, with a Lambda max of approximately 490 nm. Conclusions We show that a Go-opsin is necessary for the shadow reflex in a marine annelid, describing a functional example for a peripherally expressed photoreceptor, and suggesting that, in different species, distinct opsins contribute to varying degrees to the shadow reflex.
Ciliary and rhabdomeric photoreceptor-cell circuits form a spectral depth gauge in marine zooplankton
Ciliary and rhabdomeric photoreceptor cells represent two main lines of photoreceptor-cell evolution in animals. The two cell types coexist in some animals, however how these cells functionally integrate is unknown. We used connectomics to map synaptic paths between ciliary and rhabdomeric photoreceptors in the planktonic larva of the annelid Platynereis and found that ciliary photoreceptors are presynaptic to the rhabdomeric circuit. The behaviors mediated by the ciliary and rhabdomeric cells also interact hierarchically. The ciliary photoreceptors are UV-sensitive and mediate downward swimming in non-directional UV light, a behavior absent in ciliary-opsin knockout larvae. UV avoidance overrides positive phototaxis mediated by the rhabdomeric eyes such that vertical swimming direction is determined by the ratio of blue/UV light. Since this ratio increases with depth, Platynereis larvae may use it as a depth gauge during vertical migration. Our results revealed a functional integration of ciliary and rhabdomeric photoreceptor cells in a zooplankton larva. The animal kingdom contains many different types of eyes, but all share certain features in common. All detect light using specialized cells called photoreceptors, of which there are two main kinds: ciliary and rhabdomeric. Crustaceans and their relatives, including insects, have rhabdomeric photoreceptors; while animals with backbones, including humans, have ciliary photoreceptors. There are also several groups of animals, mostly sea-dwellers, that inherited both types of photoreceptors from their ancestors that lived millions of years ago. These include the marine ragworm, Platynereis dumerilii. The larvae of Platynereis are free-swimming plankton. Each has a transparent brain and six small, pigmented eyes. The eyes contain rhabdomeric photoreceptors. These enable the larvae to detect and swim towards light sources. Yet the larval brain also contains ciliary photoreceptors, the role of which was unknown. Verasztó, Gühmann et al. now show that ultraviolet light activates ciliary photoreceptors, whereas cyan, or blue-green, light inhibits them. Shining ultraviolet light onto Platynereis larvae makes the larvae swim downwards. By contrast, cyan light makes the larvae swim upwards. In the ocean, ultraviolet light is most intense near the surface, while cyan light reaches greater depths. Ciliary photoreceptors thus help Platynereis to avoid harmful ultraviolet radiation near the surface. Though if the larvae swim too deep, cyan light inhibits the ciliary photoreceptors and activates the rhabdomeric pigmented eyes. This makes the larvae swim upwards again. Using high-powered microscopy, Verasztó, Gühmann et al. confirm that neural circuits containing ciliary photoreceptors exchange messages with circuits containing rhabdomeric photoreceptors. This suggests that the two work together to form a depth gauge. By enabling the larvae to swim at a preferred depth, the depth gauge influences where the worms end up as adults. Its discovery should also stimulate new ideas about the evolution of eyes and photoreceptors.
Characterization of cephalic and non-cephalic sensory cell types provides insight into joint photo- and mechanoreceptor evolution
Rhabdomeric opsins (r-opsins) are light sensors in cephalic eye photoreceptors, but also function in additional sensory organs. This has prompted questions on the evolutionary relationship of these cell types, and if ancient r-opsins were non-photosensory. A molecular profiling approach in the marine bristleworm Platynereis dumerilii revealed shared and distinct features of cephalic and non-cephalic r-opsin1 -expressing cells. Non-cephalic cells possess a full set of phototransduction components, but also a mechanosensory signature. Prompted by the latter, we investigated Platynereis putative mechanotransducer and found that nompc and pkd2.1 co-expressed with r-opsin1 in TRE cells by HCR RNA-FISH. To further assess the role of r-Opsin1 in these cells, we studied its signaling properties and unraveled that r-Opsin1 is a Gαq-coupled blue light receptor. Profiling of cells from r-opsin1 mutants versus wild-types, and a comparison under different light conditions reveals that in the non-cephalic cells light – mediated by r-Opsin1 – adjusts the expression level of a calcium transporter relevant for auditory mechanosensation in vertebrates. We establish a deep-learning-based quantitative behavioral analysis for animal trunk movements and identify a light– and r-Opsin-1–dependent fine-tuning of the worm's undulatory movements in headless trunks, which are known to require mechanosensory feedback. Our results provide new data on peripheral cell types of likely light sensory/mechanosensory nature. These results point towards a concept in which such a multisensory cell type evolved to allow for fine-tuning of mechanosensation by light. This implies that light-independent mechanosensory roles of r-opsins may have evolved secondarily.
Seasonal variation in UVA light drives hormonal and behavioural changes in a marine annelid via a ciliary opsin
The right timing of animal physiology and behaviour ensures the stability of populations and ecosystems. To predict anthropogenic impacts on these timings, more insight is needed into the interplay between environment and molecular timing mechanisms. This is particularly true in marine environments. Using high-resolution, long-term daylight measurements from a habitat of the marine annelid Platynereis dumerilii , we found that temporal changes in ultraviolet A (UVA)/deep violet intensities, more than longer wavelengths, can provide annual time information, which differs from annual changes in the photoperiod. We developed experimental set-ups that resemble natural daylight illumination conditions, and automated, quantifiable behavioural tracking. Experimental reduction of UVA/deep violet light (approximately 370–430 nm) under a long photoperiod (16 h light and 8 h dark) significantly decreased locomotor activities, comparable to the decrease caused by a short photoperiod (8 h light and 16 h dark). In contrast, altering UVA/deep violet light intensities did not cause differences in locomotor levels under a short photoperiod. This modulation of locomotion by UVA/deep violet light under a long photoperiod requires c-opsin1, a UVA/deep violet sensor employing G i signalling. C-opsin1 also regulates the levels of rate-limiting enzymes for monogenic amine synthesis and of several neurohormones, including pigment-dispersing factor, vasotocin (vasopressin/oxytocin) and neuropeptide Y. Our analyses indicate a complex inteplay between UVA/deep violet light intensities and photoperiod as indicators of annual time. The intensity of UVA light, in addition to the photoperiod, is shown to determine seasonal change in the marine mass spawning annelid Platynereis dumerilii .
Genetic and Genomic Tools for the Marine Annelid Platynereis dumerilii
The bristle worm Platynereis dumerilii displays many interesting biological characteristics. These include its reproductive timing, which is synchronized to the moon phase, its regenerative capacity that is hormonally controlled, and a slow rate of evolution, which permits analyses of ancestral genes and cell types. As a marine annelid, Platynereis is also representative of the marine ecosystem, as well as one of the three large animal subphyla, the Lophotrochozoa. Here, we provide an overview of the molecular resources, functional techniques, and behavioral assays that have recently been established for the bristle worm. This combination of tools now places Platynereis in an excellent position to advance research at the frontiers of neurobiology, chronobiology, evo-devo, and marine biology.
Stable transgenesis in the marine annelid Platynereis dumerilii sheds new light on photoreceptor evolution
Research in eye evolution has mostly focused on eyes residing in the head. In contrast, noncephalic light sensors are far less understood and rather regarded as evolutionary innovations. We established stable transgenesis in the annelid Platynereis , a reference species for evolutionary and developmental comparisons. EGFP controlled by cis -regulatory elements of r-opsin , a characteristic marker for rhabdomeric photoreceptors, faithfully recapitulates known r-opsin expression in the adult eyes, and marks a pair of pigment-associated frontolateral eyelets in the brain. Unexpectedly, transgenic animals revealed an additional series of photoreceptors in the ventral nerve cord as well as photoreceptors that are located in each pair of the segmental dorsal appendages (notopodia) and project into the ventral nerve cord. Consistent with a photosensory function of these noncephalic cells, decapitated animals display a clear photoavoidance response. Molecular analysis of the receptors suggests that they differentiate independent of pax6 , a gene involved in early eye development of many metazoans, and that the ventral cells may share origins with the Hesse organs in the amphioxus neural tube. Finally, expression analysis of opn4×-2 and opn4m-2 , two zebrafish orthologs of Platynereis r-opsin , reveals that these genes share expression in the neuromasts, known mechanoreceptors of the lateral line peripheral nervous system. Together, this establishes that noncephalic photoreceptors are more widespread than assumed, and may even reflect more ancient aspects of sensory systems. Our study marks significant advance for the understanding of photoreceptor cell (PRC) evolution and development and for Platynereis as a functional lophotrochozoan model system.
Conditional and Specific Cell Ablation in the Marine Annelid Platynereis dumerilii
The marine annelid Platynereis dumerilii has become a model system for evo-devo, neurobiology and marine biology. The functional assessment of its cell types, however, has so far been very limited. Here we report on the establishment of a generally applicable, cell type specific ablation technique to overcome this restriction. Using a transgenic strain expressing the bacterial enzyme nitroreductase (ntr) under the control of the worm's r-opsin1 locus, we show that the demarcated photoreceptor cells can be specifically ablated by the addition of the prodrug metronidazole (mtz). TUNEL staining indicates that ntr expressing cells undergo apoptotic cell death. As we used a transgenic strain co-expressing ntr with enhanced green fluorescent protein (egfp) coding sequence, we were able to validate the ablation of photoreceptors not only in fixed tissue, using r-opsin1 riboprobes, but also by monitoring eGFP+ cells in live animals. The specificity of the ablation was demonstrated by the normal presence of the eye pigment cells, as well as of neuronal markers expressed in other cells of the brain, such as phc2, tyrosine hydroxylase and brn1/2/4. Additional analyses of the position of DAPI stained nuclei, the brain's overall neuronal scaffold, as well as the positions and projections of serotonergic neurons further confirmed that mtz treatment did not induce general abnormalities in the worm's brain. As the prodrug is administered by adding it to the water, targeted ablation of specific cell types can be achieved throughout the life of the animal. We show that ablation conditions need to be adjusted to the size of the worms, likely due to differences in the penetration of the prodrug, and establish ablation conditions for worms containing 10 to 55 segments. Our results establish mtz/ntr mediated conditional cell ablation as a powerful functional tool in Platynereis.
A G o -type opsin mediates the shadow reflex in the annelid Platynereis dumerilii
The presence of photoreceptive molecules outside the eye is widespread among animals, yet their functions in the periphery are less well understood. Marine organisms, such as annelid worms, exhibit a 'shadow reflex', a defensive withdrawal behaviour triggered by a decrease in illumination. Herein, we examine the cellular and molecular underpinnings of this response, identifying a role for a photoreceptor molecule of the G -opsin class in the shadow response of the marine bristle worm Platynereis dumerilii. We found Pdu-Go-opsin1 expression in single specialised cells located in adult Platynereis head and trunk appendages, known as cirri. Using gene knock-out technology and ablation approaches, we show that the presence of Go-opsin1 and the cirri is necessary for the shadow reflex. Consistently, quantification of the shadow reflex reveals a chromatic dependence upon light of approximately 500 nm in wavelength, matching the photoexcitation characteristics of the Platynereis Go-opsin1. However, the loss of Go-opsin1 does not abolish the shadow reflex completely, suggesting the existence of a compensatory mechanism, possibly acting through a ciliary-type opsin, Pdu-c-opsin2, with a Lambda of approximately 490 nm. We show that a Go-opsin is necessary for the shadow reflex in a marine annelid, describing a functional example for a peripherally expressed photoreceptor, and suggesting that, in different species, distinct opsins contribute to varying degrees to the shadow reflex.
Characterization of cephalic and non-cephalic sensory cell types provides insight into joint photo- and mechanoreceptor evolution
ABSTRACT Rhabdomeric Opsins (r-Opsins) are light-sensors in cephalic eye photoreceptors, but also function in additional sensory organs. This has prompted questions on the evolutionary relationship of these cell types, and if ancient r-Opsins cells were non-photosensory. Our profiling of cephalic and non-cephalic r-opsin1-expressing cells of the marine bristleworm Platynereis dumerilii reveals shared and distinct features. Non-cephalic cells possess a full set of phototransduction components, but also a mechanosensory signature. We determine that Pdu-r-Opsin1 is a Gαq-coupled blue-light receptor. Profiling of cells from r-opsin1 mutants versus wild-types, and a comparison under different light conditions reveals that in the non-cephalic cells, light – mediated by r-Opsin1 – adjusts the expression level of a calcium transporter relevant for auditory mechanosensation in vertebrates. We establish a deep learning-based quantitative behavioral analysis for animal trunk movements, and identify a light-and r-Opsin-1-dependent fine-tuning of the worm’s undulatory movements in headless trunks, which are known to require mechanosensory feedback. Our results suggest an evolutionary concept in which r-Opsins act as ancient, light-dependent modulators of mechanosensation, and suggest that light-independent mechanosensory roles of r-Opsins likely evolved secondarily.