MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Stable transgenesis in the marine annelid Platynereis dumerilii sheds new light on photoreceptor evolution
Stable transgenesis in the marine annelid Platynereis dumerilii sheds new light on photoreceptor evolution
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Stable transgenesis in the marine annelid Platynereis dumerilii sheds new light on photoreceptor evolution
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Stable transgenesis in the marine annelid Platynereis dumerilii sheds new light on photoreceptor evolution
Stable transgenesis in the marine annelid Platynereis dumerilii sheds new light on photoreceptor evolution

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Stable transgenesis in the marine annelid Platynereis dumerilii sheds new light on photoreceptor evolution
Stable transgenesis in the marine annelid Platynereis dumerilii sheds new light on photoreceptor evolution
Journal Article

Stable transgenesis in the marine annelid Platynereis dumerilii sheds new light on photoreceptor evolution

2013
Request Book From Autostore and Choose the Collection Method
Overview
Research in eye evolution has mostly focused on eyes residing in the head. In contrast, noncephalic light sensors are far less understood and rather regarded as evolutionary innovations. We established stable transgenesis in the annelid Platynereis , a reference species for evolutionary and developmental comparisons. EGFP controlled by cis -regulatory elements of r-opsin , a characteristic marker for rhabdomeric photoreceptors, faithfully recapitulates known r-opsin expression in the adult eyes, and marks a pair of pigment-associated frontolateral eyelets in the brain. Unexpectedly, transgenic animals revealed an additional series of photoreceptors in the ventral nerve cord as well as photoreceptors that are located in each pair of the segmental dorsal appendages (notopodia) and project into the ventral nerve cord. Consistent with a photosensory function of these noncephalic cells, decapitated animals display a clear photoavoidance response. Molecular analysis of the receptors suggests that they differentiate independent of pax6 , a gene involved in early eye development of many metazoans, and that the ventral cells may share origins with the Hesse organs in the amphioxus neural tube. Finally, expression analysis of opn4×-2 and opn4m-2 , two zebrafish orthologs of Platynereis r-opsin , reveals that these genes share expression in the neuromasts, known mechanoreceptors of the lateral line peripheral nervous system. Together, this establishes that noncephalic photoreceptors are more widespread than assumed, and may even reflect more ancient aspects of sensory systems. Our study marks significant advance for the understanding of photoreceptor cell (PRC) evolution and development and for Platynereis as a functional lophotrochozoan model system.