Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3
result(s) for
"Vidy-Roche, Aurore"
Sort by:
Mother-to-Child Transmission of HTLV-1 Epidemiological Aspects, Mechanisms and Determinants of Mother-to-Child Transmission
by
Gessain, Antoine
,
Percher, Florent
,
Jeannin, Patricia
in
Acute Disease
,
Adult
,
Anemia, Hemolytic
2016
Human T-cell Lymphotropic Virus type 1 (HTLV-1) is a human retrovirus that infects at least 5–10 million people worldwide, and is the etiological agent of a lymphoproliferative malignancy; Adult T-cell Leukemia/Lymphoma (ATLL); and a chronic neuromyelopathy, HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP), as well as other inflammatory diseases such as infective dermatitis and uveitis. Besides sexual intercourse and intravenous transmission, HTLV-1 can also be transmitted from infected mother to child during prolonged breastfeeding. Some characteristics that are linked to mother-to-child transmission (MTCT) of HTLV-1, such as the role of proviral load, antibody titer of the infected mother, and duration of breastfeeding, have been elucidated; however, most of the mechanisms underlying HTLV-1 transmission during breast feeding remain largely unknown, such as the sites of infection and cellular targets as well as the role of milk factors. The present review focuses on the latest findings and current opinions and perspectives on MTCT of HTLV-1.
Journal Article
The Influenza Virus Protein PB1-F2 Increases Viral Pathogenesis through Neutrophil Recruitment and NK Cells Inhibition
2016
The influenza A virus (IAV) PB1-F2 protein is a virulence factor contributing to the pathogenesis observed during IAV infections in mammals. In this study, using a mouse model, we compared the host response associated with PB1-F2 with an early transcriptomic signature that was previously associated with neutrophils and consecutively fatal IAV infections. This allowed us to show that PB1-F2 is partly involved in neutrophil-related mechanisms leading to death. Using neutropenic mice, we confirmed that the harmful effect of PB1-F2 is due to an excessive inflammation mediated by an increased neutrophil mobilization. We identified the downstream effects of this PB1-F2-exacerbated neutrophil recruitment. PB1-F2 had no impact on the lymphocyte recruitment in the airways at day 8 pi. However, functional genomics analysis and flow cytometry in broncho-alveolar lavages at 4 days pi revealed that PB1-F2 induced a NK cells deficiency. Thus, our results identify PB1-F2 as an important immune disruptive factor during the IAV infection.
Journal Article