Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
15
result(s) for
"Vives-Peris, Vicente"
Sort by:
Root exudates: from plant to rhizosphere and beyond
by
Vives-Peris, Vicente
,
Perez-Clemente, Rosa Maria
,
de Ollas, Carlos
in
Biological Transport, Active
,
Biomedical and Life Sciences
,
Biotechnology
2020
Key message This article describes the composition of root exudates, how these metabolites are released to the rhizosphere and their importance in the recruitment of benefcial microbiota that alleviate plant stress. Abstract Metabolites secreted to the rhizosphere by roots are involved in several processes. By modulating the composition of the root exudates, plants can modify soil properties to adapt and ensure their survival under adverse conditions. They use several strategies such as (1) changing soil pH to solubilize nutrients into assimilable forms, (2) chelating toxic compounds, (3) attracting benefcial microbiota, or (4) releasing toxic substances for pathogens, etc. In this work, the composition of root exudates as well as the diferent mechanisms of root exudation have been reviewed. Existing methodologies to collect root exudates, indicating their advantages and disadvantages, are also described. Factors afecting root exudation have been exposed, including physical, chemical, and biological agents which can produce qualitative and quantitative changes in exudate composition. Finally, since root exudates play an important role in the recruitment of mycorrhizal fungi and plant growth-promoting rhizobacteria (PGPR), the mechanisms of interaction between plants and the benefcial microbiota have been highlighted.
Journal Article
Assessing of growth, antioxidant enzymes, and phytohormone regulation in Cucurbita pepo under cadmium stress
by
oumayma, labidi
,
Vives-Peris, Vicente
,
Gomez-Cadenas, Aurelio
in
Abscisic acid
,
Acetic acid
,
antioxidant enzymes
2021
One of the major problems worldwide is soil pollution by trace metal elements, which limits plant productivity and threatens human health. In this work, we have studied the effect of different concentrations of cadmium on Cucurbita pepo plants, evaluating different physiological and biochemical parameters: hormone signaling, metabolite concentration (malondialdehyde and hydrogen peroxide) and, in addition, the antioxidant enzyme activities of catalase and superoxide dismutase were evaluated. The production of biomass decreased under the Cd‐stress. The results showed that C. pepo accumulates higher amounts of Cd2+ in roots than in shoots and fruits. Cd2+ differently affected the content of endogenous phytohormones. Furthermore, data suggest an essential involvement of roots in the regulation of tolerance to trace elements. As a result, indole acetic acid content increased in roots of treated plants, indicating that this phytohormone can stimulate root promotion and growth under Cd‐stress. Similarly, salicylic acid content in roots and shoots increased in response to Cd2+, as well as abscisic acid levels in roots and fruits. In roots, the rambling accumulation pattern observed for jasmonic acid and salicylic acid suggests the lack of a specific regulation role against trace element toxicity. The activity of catalase and superoxide dismutase decreased, disrupted by the metal stress. However, the proline, malondialdehyde and hydrogen peroxide content significantly increased in Cd2+in all the analyzed tissues of the stressed plants. All these data suggest that C. pepo plants are equipped with an effective antioxidant mechanism against oxidative stress induced by cadmium up to a concentration of 500 μM.
Journal Article
Efficient strategies for controlled release of nanoencapsulated phytohormones to improve plant stress tolerance
by
Vives-Peris, Vicente
,
Gomez-Cadenas, Aurelio
,
Sampedro-Guerrero, Jimmy
in
Abiotic stress
,
Abscisic acid
,
Active control
2023
Climate change due to different human activities is causing adverse environmental conditions and uncontrolled extreme weather events. These harsh conditions are directly affecting the crop areas, and consequently, their yield (both in quantity and quality) is often impaired. It is essential to seek new advanced technologies to allow plants to tolerate environmental stresses and maintain their normal growth and development. Treatments performed with exogenous phytohormones stand out because they mitigate the negative effects of stress and promote the growth rate of plants. However, the technical limitations in field application, the putative side effects, and the difficulty in determining the correct dose, limit their widespread use. Nanoencapsulated systems have attracted attention because they allow a controlled delivery of active compounds and for their protection with eco-friendly shell biomaterials. Encapsulation is in continuous evolution due to the development and improvement of new techniques economically affordable and environmentally friendly, as well as new biomaterials with high affinity to carry and coat bioactive compounds. Despite their potential as an efficient alternative to phytohormone treatments, encapsulation systems remain relatively unexplored to date. This review aims to emphasize the potential of phytohormone treatments as a means of enhancing plant stress tolerance, with a specific focus on the benefits that can be gained through the improved exogenous application of these treatments using encapsulation techniques. Moreover, the main encapsulation techniques, shell materials and recent work on plants treated with encapsulated phytohormones have been compiled.
Journal Article
Morphological, physiological, and molecular scion traits are determinant for salt-stress tolerance of grafted citrus plants
by
Vives-Peris, Vicente
,
Gomez-Cadenas, Aurelio
,
Perez-Clemente, Rosa Maria
in
Abiotic stress
,
Abscisic acid
,
Acids
2023
Introduction: Citrus productivity has been decreasing in the last decade in the Mediterranean basin as a consequence of climate change and the high levels of salinity found in the aquifers. Citrus varieties are cultivated grafted onto a rootstock, which has been reported as responsible for plant tolerance to adverse situations. However, other important factors for stress tolerance relying in the scion have been less studied. The aim of this study was to evaluate the effect of the grafted scion on citrus tolerance to salt stress. Methods: Four different citrus rootstock/scion combinations were subjected to salt stress for 30 days, using Carrizo citrange (CC) or Citrus macrophylla (CM) as rootstocks, and Navelina orange (NA) or Oronules mandarin (OR) as scions. CM-OR was the most tolerant combination, whereas CC-NA was the most sensitive one. Results and discussion: Our results support the idea that the rootstock plays an important role in salt stress tolerance, but scion is also crucial. Thus, photosynthesis and transpiration, processes regulated by abscisic acid and jasmonic acid, are determinant of plant performance. These photosynthetic parameters were not affected in plants of the salt-tolerant combination CM-OR, probably due to the lower intoxication with Cl− ions, allowing a better performance of the photosynthetic machinery under stress conditions. The different stomatal density of the two citrus scions used in this work (higher in the sensitive NA in comparison to the tolerant OR) also contributes to the different tolerance of the grafted plants to this adverse condition. Additionally, CsDTX35.1 and CsDTX35.2, genes codifying for Cl− tonoplast transporters, were exclusively overexpressed in plants of the salt-tolerant combination CM-OR, suggesting that these transporters involved in Cl− compartmentalization could be crucial for salt stress tolerance. It is concluded that to improve citrus tolerance to high salinity, it is important that scions have a versatile photosynthetic system, an adequate stomatal density, and a proper modulation of genes coding for Cl− transporters in the tonoplast.
Journal Article
Root Involvement in Plant Responses to Adverse Environmental Conditions
by
Vives-Peris, Vicente
,
Gomez-Cadenas, Aurelio
,
Perez-Clemente, Rosa Maria
in
Abiotic stress
,
Amino acids
,
Antioxidants
2020
limate change is altering the environment in which plants grow and survive. An increase in worldwide Earth surface temperatures has been already observed, together with an increase in the intensity of other abiotic stress conditions such as water deficit, high salinity, heavy metal intoxication, etc., generating harmful conditions that destabilize agricultural systems. Stress conditions deeply affect physiological, metabolic and morphological traits of plant roots, essential organs for plant survival as they provide physical anchorage to the soil, water and nutrient uptake, mechanisms for stress avoidance, specific signals to the aerial part and to the biome in the soil, etc. However, most of the work performed until now has been mainly focused on aerial organs and tissues. In this review, we summarize the current knowledge about the effects of different abiotic stress conditions on root molecular and physiological responses. First, we revise the methods used to study these responses (omics and phenotyping techniques). Then, we will outline how environmental stress conditions trigger various signals in roots for allowing plant cells to sense and activate the adaptative responses. Later, we discuss on some of the main regulatory mechanisms controlling root adaptation to stress conditions, the interplay between hormonal regulatory pathways and the global changes on gene expression and protein homeostasis. We will present recent advances on how the root system integrates all these signals to generate different physiological responses, including changes in morphology, long distance signaling and root exudation. Finally, we will discuss the new prospects and challenges in this field.
Journal Article
Appraisal of Abelmoschus esculentus L. response to aluminum and barium stress
by
Dridi, Nesrine
,
Caçador, Isabel
,
SLEIMI, Noomene
in
Abelmoschus esculentus
,
Accumulation
,
Adaptability
2023
Trace metal element (TME) pollution is a major threat to plants, animals and humans. Agricultural products contaminated with metals may pose health risks for people; therefore, international standards have been established by the FAO/WHO to ensure food safety as well as the possibility of crop production in contaminated soils. This study aimed to assess the accumulating potential of aluminum and barium in the roots, shoots and fruits of Abelmoschus esculentus L., and their effect on growth and mineral nutrition. The content of proline and some secondary metabolites was also evaluated. After treating okra plants with aluminum/barium (0, 100, 200, 400 and 600 µM) for 45 days, the results showed that Al stimulated the dry biomass production, whereas Ba negatively affected the growth and the fructification yield. The okra plants retained both elements and exhibited a preferential accumulation in the roots following the sequence: roots > shoots > fruits, which is interesting for phytostabilization purposes. Al or Ba exposure induced a decline in mineral uptake (K, Ca, Mg, Zn and Fe), especially in roots and shoots. In order to cope with the stress conditions, the okra plants enhanced their proline and total phenol amounts, offering better adaptability to stress.
Journal Article
Kaolin Application Modulates Grapevine Photochemistry and Defence Responses in Distinct Mediterranean-Type Climate Vineyards
2021
At a local scale, kaolin particle-film technology is considered a short-term adaptation strategy to mitigate the adverse effects of global warming on viticulture. This study aims to evaluate kaolin application effects on photochemistry and related defence responses of Touriga Franca (TF) and Touriga Nacional (TN) grapevines planted at two Portuguese winegrowing regions (Douro and Alentejo) over two summer seasons (2017 and 2018). For this purpose, chlorophyll a fluorescence transient analysis, leaf temperature, foliar metabolites, and the expression of genes related to heat stress (VvHSP70) and stress tolerance (VvWRKY18) were analysed. Kaolin application had an inhibitory effect on VvHSP70 expression, reinforcing its protective role against heat stress. However, VvWRKY18 gene expression and foliar metabolites accumulation revealed lower gene expression in TN-treated leaves and higher in TF at Alentejo, while lipid peroxidation levels decreased in both treated varieties and regions. The positive kaolin effect on the performance index parameter (PIABS) increased at ripening, mainly in TN, suggesting that stress responses can differ among varieties, depending on the initial acclimation to kaolin treatment. Moreover, changes on chlorophyll fluorescence transient analysis were more pronounced at the Douro site in 2017, indicating higher stress severity and impacts at this site, which boosted kaolin efficiency in alleviating summer stress. Under applied contexts, kaolin application can be considered a promising practice to minimise summer stress impacts in grapevines grown in Mediterranean-like climate regions.
Journal Article
Salt stress alleviation in citrus plants by plant growth-promoting rhizobacteria Pseudomonas putida and Novosphingobium sp
by
Perez-Clemente, Rosa Maria
,
Gomez-Cadenas, Aurelio
,
Vives, Vicente
in
Abiotic stress
,
Abscisic acid
,
Abscisic Acid - metabolism
2018
Key message This work reveals the protective role of two rhizobacteria, Pseudomonas putida and Novosphingobium sp., on citrus plants subjected to salt stress conditions. Abstract Detrimental salt stress effects on crops are likely to increase due to climate change reducing the quality of irrigation water. Plant growth-promoting rhizobacteria (PGPRs) can mitigate stress-induced damage in plants cultivated under high salinity conditions. In this work, Citrus macrophylla (alemow) plants inoculated with the rhizobacteria Pseudomonas putida KT2440 or Novosphingobium sp. HR1a were subjected to salt stress for 30 days. Results showed that in absence of salt stress, Novosphingobium sp. HR1a induced a decrease of transpiration (E) and stomatal conductance (gs). Both rhizobacteria reduced salt stress-induced damage. Levels of abscisic acid (ABA) and salicylic acid (SA) were lower in inoculated plants under salt stress conditions. Similarly, under stress conditions maximum efficiency of photosystem II (Fv/Fm) in inoculated plants decreased to a lower extent than in non-inoculated ones. In stressed plants, Novosphingobium sp. HR1a also induced leaf accumulation of 3-indole acetic acid (IAA) and a delay in the decrease of quantum yield (ΦPSII). P. putida KT2440 inhibited root chloride and proline accumulation in response to salt stress. Although both bacterial species had beneficial effects on salt-stressed citrus plants, Novosphingobium sp. HR1a induced a better plant performance. Therefore, both strains could be candidates to be used as PGPRs in programs of inoculation for citrus protection against salt stress.
Journal Article
Encapsulation Reduces the Deleterious Effects of Salicylic Acid Treatments on Root Growth and Gravitropic Response
by
Vives-Peris, Vicente
,
Gomez-Cadenas, Aurelio
,
Sampedro-Guerrero, Jimmy
in
Abiotic stress
,
Arabidopsis
,
Chitosan
2022
The role of salicylic acid (SA) on plant responses to biotic and abiotic stresses is well documented. However, the mechanism by which exogenous SA protects plants and its interactions with other phytohormones remains elusive. SA effect, both free and encapsulated (using silica and chitosan capsules), on Arabidopsis thaliana development was studied. The effect of SA on roots and rosettes was analysed, determining plant morphological characteristics and hormone endogenous levels. Free SA treatment affected length, growth rate, gravitropic response of roots and rosette size in a dose-dependent manner. This damage was due to the increase of root endogenous SA concentration that led to a reduction in auxin levels. The encapsulation process reduced the deleterious effects of free SA on root and rosette growth and in the gravitropic response. Encapsulation allowed for a controlled release of the SA, reducing the amount of hormone available and the uptake by the plant, mitigating the deleterious effects of the free SA treatment. Although both capsules are suitable as SA carrier matrices, slightly better results were found with chitosan. Encapsulation appears as an attractive technology to deliver phytohormones when crops are cultivated under adverse conditions. Moreover, it can be a good tool to perform basic experiments on phytohormone interactions.
Journal Article
Citrus plants exude proline and phytohormones under abiotic stress conditions
by
Perez-Clemente, Rosa Maria
,
Gomez-Cadenas, Aurelio
,
Vives, Vicente
in
Abscisic acid
,
Abscisic Acid - metabolism
,
Acetic acid
2017
Key message This article describes the root exudation of proline and phytohormones in citrus and their involvement in salt- and heat-stress responses. Abstract Plants are constantly releasing several compounds to the rhizosphere through their roots, including primary and secondary metabolites. Root exudation can be affected by growth conditions, including pH, nutrient availability, soil salinity, or temperature. In vitro-cultured plants of two citrus genotypes with contrasting tolerance to salt- and heat-stress conditions were used as plant material. Proline and phytohormone contents in root exudates from plants subjected to salt or high-temperature conditions were evaluated. In addition, tissue damage and lipid peroxidation together with endogenous levels of chloride, proline, and phytohormones were determined in roots and shoots. Proline was released in larger quantities to the rhizosphere when plants were subjected to salt or heat stress. In each stress condition, the concentration of this amino acid was higher in the exudates obtained from plants tolerant to this particular stress condition. On the other hand, root exudation of phytohormones salicylic acid, indole acetic acid, abscisic acid, and jasmonic acid generally increased under both adverse conditions. Results confirm a phytohormone exudation in citrus plants, which had not been described previously and can have an important role in the rhizosphere communication. Moreover, stress conditions and the different tolerance of each genotype to the particular stress significantly modify the exudation pattern both quantitatively and qualitatively.
Journal Article