Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
32 result(s) for "Vora, Kalpit A."
Sort by:
A potent broadly neutralizing human RSV antibody targets conserved site IV of the fusion glycoprotein
Respiratory syncytial virus (RSV) infection is the leading cause of hospitalization and infant mortality under six months of age worldwide; therefore, the prevention of RSV infection in all infants represents a significant unmet medical need. Here we report the isolation of a potent and broadly neutralizing RSV monoclonal antibody derived from a human memory B-cell. This antibody, RB1, is equipotent on RSV A and B subtypes, potently neutralizes a diverse panel of clinical isolates in vitro and demonstrates in vivo protection. It binds to a highly conserved epitope in antigenic site IV of the RSV fusion glycoprotein. RB1 is the parental antibody to MK-1654 which is currently in clinical development for the prevention of RSV infection in infants. Respiratory syncytial virus (RSV) is a leading cause of infant hospitalization. Here, the authors isolate a human monoclonal antibody that binds to a highly conserved epitope on the RSV fusion protein, neutralizes RSV A and B subtypes equipotently and is protective in the cotton rat model.
Modified mRNA/lipid nanoparticle-based vaccines expressing respiratory syncytial virus F protein variants are immunogenic and protective in rodent models of RSV infection
The RSV Fusion (F) protein is a target for neutralizing antibody responses and is a focus for vaccine discovery; however, the process of RSV entry requires F to adopt a metastable prefusion form and transition to a more stable postfusion form, which displays less potent neutralizing epitopes. mRNA vaccines encode antigens that are translated by host cells following vaccination, which may allow conformational transitions similar to those observed during natural infection to occur. Here we evaluate a panel of chemically modified mRNA vaccines expressing different forms of the RSV F protein, including secreted, membrane associated, prefusion-stabilized, and non-stabilized structures, for conformation, immunogenicity, protection, and safety in rodent models. Vaccination with mRNA encoding native RSV F elicited antibody responses to both prefusion- and postfusion-specific epitopes, suggesting that this antigen may adopt both conformations in vivo. Incorporating prefusion stabilizing mutations further shifts the immune response toward prefusion-specific epitopes, but does not impact neutralizing antibody titer. mRNA vaccine candidates expressing either prefusion stabilized or native forms of RSV F protein elicit robust neutralizing antibody responses in both mice and cotton rats, similar to levels observed with a comparable dose of adjuvanted prefusion stabilized RSV F protein. In contrast to the protein subunit vaccine, mRNA-based vaccines elicited robust CD4+ and CD8+ T-cell responses in mice, highlighting a potential advantage of the technology for vaccines requiring a cellular immune response for efficacy.
Discovery and Characterization of Phage Display-Derived Human Monoclonal Antibodies against RSV F Glycoprotein
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in infants, the elderly and in immunosuppressed populations. The vast majority of neutralizing antibodies isolated from human subjects target the RSV fusion (F) glycoprotein, making it an attractive target for the development of vaccines and therapeutic antibodies. Currently, Synagis® (palivizumab) is the only FDA approved antibody drug for the prevention of RSV infection, and there is a great need for more effective vaccines and therapeutics. Phage display is a powerful tool in antibody discovery with the advantage that it does not require samples from immunized subjects. In this study, Morphosys HuCAL GOLD® phage libraries were used for panning against RSV prefusion and postfusion F proteins. Panels of human monoclonal antibodies (mAbs) against RSV F protein were discovered following phage library panning and characterized. Antibodies binding specifically to prefusion or postfusion F proteins and those binding both conformations were identified. 3B1 is a prototypic postfusion F specific antibody while 2E1 is a prototypic prefusion F specific antibody. 2E1 is a potent broadly neutralizing antibody against both RSV A and B strains. Epitope mapping experiments identified a conformational epitope spanning across three discontinuous sections of the RSV F protein, as well as critical residues for antibody interaction.
Potent neutralizing antibodies elicited by dengue vaccine in rhesus macaque target diverse epitopes
There is still no safe and effective vaccine against dengue virus infection. Epidemics of dengue virus infection are increasingly a threat to human health around the world. Antibodies generated in response to dengue infection have been shown to impact disease development and effectiveness of dengue vaccine. In this study, we investigated monoclonal antibody responses to an experimental dengue vaccine in rhesus macaques. Variable regions of both heavy chain (VH) and light chain (VL) were cloned from single antibody-secreting B cells. A total of 780 monoclonal antibodies (mAbs) composed of paired VH and VL were characterized. Results show that the vaccination induces mAbs with diverse germline sequences and a wide range of binding affinities. Six potent neutralizing mAbs were identified among 130 dengue envelope protein binders. Critical amino acids for each neutralizing antibody binding to the dengue envelope protein were identified by alanine scanning of mutant libraries. Diverse epitopes were identified, including epitopes on the lateral ridge of DIII, the I-III hinge, the bc loop adjacent to the fusion loop of DII, and the β-strands and loops of DI. Significantly, one of the neutralizing mAbs has a previously unknown epitope in DII at the interface of the envelope and membrane protein and is capable of neutralizing all four dengue serotypes. Taken together, the results of this study not only provide preclinical validation for the tested experimental vaccine, but also shed light on a potential application of the rhesus macaque model for better dengue vaccine evaluation and design of vaccines and immunization strategies.
Profiling of hMPV F-specific antibodies isolated from human memory B cells
Human metapneumovirus (hMPV) belongs to the Pneumoviridae family and is closely related to respiratory syncytial virus (RSV). The surface fusion (F) glycoprotein mediates viral fusion and is the primary target of neutralizing antibodies against hMPV. Here we report 113 hMPV-F specific monoclonal antibodies (mAbs) isolated from memory B cells of human donors. We characterize the antibodies’ germline usage, epitopes, neutralization potencies, and binding specificities. We find that unlike RSV-F specific mAbs, antibody responses to hMPV F are less dominant against the apex of the antigen, and the majority of the potent neutralizing mAbs recognize epitopes on the side of hMPV F. Furthermore, neutralizing epitopes that differ from previously defined antigenic sites on RSV F are identified, and multiple binding modes of site V and II mAbs are discovered. Interestingly, mAbs that bind preferentially to the unprocessed prefusion F show poor neutralization potency. These results elucidate the immune recognition of hMPV infection and provide novel insights for future hMPV antibody and vaccine development. Here, Xiao et al . isolate a large panel of antibodies against human metapneumovirus fusion protein from human B cells, and characterize their epitopes, neutralization activities, and antigen binding specificity, providing a useful framework for understanding the immune response against hMPV.
Respiratory syncytial virus elicits enriched CD8+ T lymphocyte responses in lung compared with blood in African green monkeys
Respiratory syncytial virus (RSV) is a leading cause of serious lower respiratory tract disease in young children and older adults throughout the world. Prevention of severe RSV disease through active immunization is optimal but no RSV vaccine has been licensed so far. Immune mechanisms of protection against RSV infection in humans have not been fully established, thus a comprehensive characterization of virus-specific immune responses in a relevant animal model will be beneficial in defining correlates of protection. In this study, we infected juvenile naive AGMs with RSV A2 strain and longitudinally assessed virus-specific humoral and cellular immune responses in both peripheral blood and the respiratory tract. RSV viral loads at nasopharyngeal surfaces and in the lung peaked at around day 5 following infection, and then largely resolved by day 10. Low levels of neutralizing antibody titers were detected in serum, with similar kinetics as RSV fusion (F) protein-binding IgG antibodies. RSV infection induced CD8+, but very little CD4+, T lymphocyte responses in peripheral blood. Virus-specific CD8+ T cell frequencies were ~10 fold higher in bronchoaveolar lavage (BAL) compared to peripheral blood and exhibited effector memory (CD95+CD28-) / tissue resident memory (CD69+CD103+) T (TRM) cell phenotypes. The kinetics of virus-specific CD8+ T cells emerging in peripheral blood and BAL correlated with declining viral titers, suggesting that virus-specific cellular responses contribute to the clearance of RSV infection. RSV-experienced AGMs were protected from subsequent exposure to RSV infection. Additional studies are underway to understand protective correlates in these seropositive monkeys.
Efficacy of monoclonal antibodies and maternal vaccination for prophylaxis of respiratory syncytial virus disease
Background Respiratory syncytial virus (RSV) is a leading cause of respiratory tract infection in infants and young children. The level of serum neutralizing antibodies (SNAs) is often used as a measure of protection against respiratory syncytial virus (RSV) infection. Methods A qualified, model-based, meta-analysis efficacy prediction framework was used to understand the maternal vaccination-induced fold-increase in SNA titers necessary to achieve, over several study observation periods and study populations, similar protection to that of the monoclonal antibody clesrovimab (MK-1654). Results Simulations indicated that 3-month and 6-month efficacy comparable to that predicted for passive immunization (clesrovimab) would require a maternal vaccine to increase SNA titers by 30- and 60-fold, respectively, higher than observed increases reported to date. Efficacy of maternal vaccination was predicted (for vaccines similar to those with published data) to be substantially lower for preterm infants compared to full-term infants, and substantially less over 6 months than over 3 months. Efficacy of passive immunization was predicted to be similar or higher in preterm infants than full-term infants and was similar for 3- and 6-month observation periods. Conclusions Modeling can be used to reliably predict the efficacy of maternal vaccination for preventing RSV in infants. Passive immunization (e.g., with clesrovimab) is likely to provide more protection for preterm infants and for infants born outside the RSV season than that provided by current maternal vaccines. Maternal vaccination may provide partial protection from RSV disease to full-term infants born just prior to or during the RSV season. Plain language summary Infection with respiratory syncytial virus (RSV) can lead to RSV disease, a respiratory illness which can lead to hospitalization in infants and young children. Two approaches for preventing RSV disease are immunization of the infant after birth and vaccination of pregnant people before delivery (maternal vaccination). We compared these two approaches with a computer model to predict which is more effective. Our results predict that immunization of both preterm and full-term infants could protect against RSV disease better than maternal vaccination. Maternal vaccination is predicted to partially protect full-term infants who are born just before, or during, a season when RSV is more common. Our results suggest immunization schedules (for infants) could potentially be timed with the seasons to protect even better against RSV disease. Plock et al. integrate clinical efficacy data on monoclonal antibodies and maternal vaccination for prevention of RSV disease in infants. Monoclonal antibodies are predicted to be more efficacious than maternal vaccination in preterm and full-term infants with maternal vaccination expected to partially protect full-term infants born just before, or during, an RSV season.
Anti-Idiotypic Antibody as a Booster Vaccine Against Respiratory Syncytial Virus
Background/Objectives: The respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections in children and adults. With nearly everyone infected by the age of five, there is an opportunity to develop booster vaccines that enhance B-cell immunity, promoting potent and broadly neutralizing antibodies. One potential approach involves using anti-idiotypic antibodies (anti-IDs) to mimic specific antigenic sites and enhance preexisting immunity in an epitope-specific manner. RB1, a monoclonal antibody (mAb) that binds to site IV of the RSV fusion (RSV F) protein, is a potent and broadly neutralizing against RSV A and B viruses. It is the precursor for MK1654 (clesrovimab), which successfully completed a Phase III clinical trial. Methods: In this study, we isolated two anti-IDs, 1A6 and 1D4, targeting RB1 CDR regions, demonstrating that 1A6 competes fully with RSV F in binding to RB1. Results: We resolved the RB1-1A6 and RB1-1D4 Fab-Fab complex structures and proved that 1A6 mimics the RSV F site IV better than 1D4. In an immunogenicity study, mice primed with RSV F and boosted with 1A6 Fab showed a site IV-specific antibody response with a concurrent increase in RSV virus neutralization. Conclusions: These results suggest that anti-IDs could be potentially used as booster vaccines for specific epitopes.
Effector and Central Memory Poly-Functional CD4+ and CD8+ T Cells are Boosted upon ZOSTAVAX® Vaccination
ZOSTAVAX(®) is a live attenuated varicella-zoster virus (VZV) vaccine that is licensed for the protection of individuals ≥50 years against shingles and its most common complication, postherpetic neuralgia. While IFNγ responses increase upon vaccination, the quality of the T cell response has not been elucidated. By using polychromatic flow cytometry, we characterized the breadth, magnitude, and quality of ex vivo CD4(+) and CD8(+) T cell responses induced 3-4 weeks after ZOSTAVAX vaccination of healthy adults. We show, for the first time that the highest frequencies of VZV-specific CD4(+) T cells were poly-functional CD154(+)IFNγ(+)IL-2(+)TNFα(+) cells, which were boosted upon vaccination. The CD4(+) T cells were broadly reactive to several VZV proteins, with immediate early (IE) 63 ranking the highest among them in the fold rise of poly-functional cells, followed by IE62, gB, open reading frame (ORF) 9, and gE. We identified a novel poly-functional ORF9-specific CD8(+) T cell population in 62% of the subjects, and these were boosted upon vaccination. Poly-functional CD4(+) and CD8(+) T cells produced significantly higher levels of IFNγ, IL-2, and TNFα compared to mono-functional cells. After vaccination, a boost in the expression of IFNγ by poly-functional IE63- and ORF9-specific CD4(+) T cells and IFNγ, IL-2, and TNFα by ORF9-specific poly-functional CD8(+) T cells was observed. Responding poly-functional T cells exhibited both effector (CCR7(-)CD45RA(-)CD45RO(+)), and central (CCR7(+)CD45RA(-)CD45RO(+)) memory phenotypes, which expressed comparable levels of cytokines. Altogether, our studies demonstrate that a boost in memory poly-functional CD4(+) T cells and ORF9-specific CD8(+) T cells may contribute toward ZOSTAVAX efficacy.
Discovery of Antibodies Against Endemic Coronaviruses with NGS-Based Human Fab Phage Display Platform
Background: There is an unmet medical need to develop a vaccine targeting endemic coronaviruses. Antigen-specific monoclonal antibodies (mAbs) are crucial for many assays to support vaccine development. Objective: In this study, we used the HuCal Fab phage display library with a diversity of 4.5 × 1010 to identify antibodies specific to the spike proteins of the four endemic coronaviruses: OC43, NL63, 229E, and HKU1. Methods: As proof of concept, we established a newly designed platform using a long-read NGS workflow for antibody discovery and compared the results against the traditional workflow using Sanger sequencing consisting of lengthy and laborious benchwork. Results: The long-read NGS workflow identified most of the antibodies seen from the Sanger sequencing workflow, and many more additional antigen-specific antibodies against the endemic coronaviruses. Overall efficiency improved up to three times, comparing the traditional workflow with the NGS workflow. Of the 113 NGS-derived mAbs isolated to bind the four endemic coronavirus spike proteins, 107/113 (94.7%) had potent ELISA binding affinities (EC50 < 150 ng/mL, or <1 nM), and 61/113 (54%) had extremely potent ELISA binding affinities (EC50 of <15 ng/mL, or <0.1 nM). Conclusions: We successfully developed and incorporated the long-read NGS workflow to generate target-specific antibodies with many antibodies at sub-nanomolar affinities that are likely missed by a traditional workflow. We identified strong neutralizing antibodies, proving that our endemic spike proteins are capable of generating antibodies that could offer protection against the endemic HCoVs.