Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
21
result(s) for
"Wagstaff, Jane L."
Sort by:
Mechanism of completion of peptidyltransferase centre assembly in eukaryotes
2019
During their final maturation in the cytoplasm, pre-60S ribosomal particles are converted to translation-competent large ribosomal subunits. Here, we present the mechanism of peptidyltransferase centre (PTC) completion that explains how integration of the last ribosomal proteins is coupled to release of the nuclear export adaptor Nmd3. Single-particle cryo-EM reveals that eL40 recruitment stabilises helix 89 to form the uL16 binding site. The loading of uL16 unhooks helix 38 from Nmd3 to adopt its mature conformation. In turn, partial retraction of the L1 stalk is coupled to a conformational switch in Nmd3 that allows the uL16 P-site loop to fully accommodate into the PTC where it competes with Nmd3 for an overlapping binding site (base A2971). Our data reveal how the central functional site of the ribosome is sculpted and suggest how the formation of translation-competent 60S subunits is disrupted in leukaemia-associated ribosomopathies. Biological machines called ribosomes make proteins in the cells of our body. Mammalian cells build roughly 7,500 new ribosomes every minute, each one containing 80 proteins and four RNA molecules. Problems that prevent ribosomes from assembling correctly have been linked to cancers such as leukemia, and a class of disorders called ribosomopathies that increase the likelihood of someone developing cancer. Understanding how ribosomes assemble could therefore help to develop new treatments for these diseases. Ribosomes are mostly constructed in the cell nucleus, but the final stages of assembly occur in the cytoplasm of the cell. A protein called Nmd3 binds to the partly constructed ribosome to export it out of the nucleus. Then, the final ribosomal proteins integrate into the structure to form a key site called the peptidyltransferase centre (PTC), which is where the ribosome joins together amino acids when making new proteins for the cell. Questions remained about how these final assembly steps occur, and how Nmd3 is removed from the ribosome. Kargas et al. have now examined how the PTC forms by using a method known as cryo-electron microscopy to determine the structures that the ribosome forms at different stages of assembly. This revealed that when the last two ribosomal proteins integrate into the ribosome, the ribosomal RNA goes through large shape changes that evict Nmd3 from the PTC. Quality control factors then check the structure of the newly formed ribosome and, if it passes their checks that it works correctly, license it to start making cell proteins. This stage of ribosome assembly is likely to occur in the same way in all plant, animal and other eukaryotic species. The results presented by Kargas et al. will also help researchers to better understand the consequences of the mutations that affect ribosomal proteins in cancer cells. Ultimately, this knowledge may help to uncover new ways to treat cancer and ribosomopathies.
Journal Article
Disease-specific tau filaments assemble via polymorphic intermediates
2024
Intermediate species in the assembly of amyloid filaments are believed to play a central role in neurodegenerative diseases and may constitute important targets for therapeutic intervention
1
,
2
. However, structural information about intermediate species has been scarce and the molecular mechanisms by which amyloids assemble remain largely unknown. Here we use time-resolved cryogenic electron microscopy to study the in vitro assembly of recombinant truncated tau (amino acid residues 297–391) into paired helical filaments of Alzheimer’s disease or into filaments of chronic traumatic encephalopathy
3
. We report the formation of a shared first intermediate amyloid filament, with an ordered core comprising residues 302–316. Nuclear magnetic resonance indicates that the same residues adopt rigid, β-strand-like conformations in monomeric tau. At later time points, the first intermediate amyloid disappears and we observe many different intermediate amyloid filaments, with structures that depend on the reaction conditions. At the end of both assembly reactions, most intermediate amyloids disappear and filaments with the same ordered cores as those from human brains remain. Our results provide structural insights into the processes of primary and secondary nucleation of amyloid assembly, with implications for the design of new therapies.
A time-resolved cryogenic electron microscopy analysis provides structural information on the processes of primary and secondary nucleation of tau amyloid formation, with implications for the development of new therapies.
Journal Article
Structure of PINK1 in complex with its substrate ubiquitin
by
Schubert, Alexander F.
,
Maslen, Sarah L.
,
Gladkova, Christina
in
631/337/458/1733
,
631/337/458/582
,
631/45/535/1266
2017
Autosomal-recessive juvenile Parkinsonism (AR-JP) is caused by mutations in a number of PARK genes, in particular the genes encoding the E3 ubiquitin ligase Parkin (
PARK2
, also known as
PRKN
) and its upstream protein kinase PINK1 (also known as
PARK6
). PINK1 phosphorylates both ubiquitin and the ubiquitin-like domain of Parkin on structurally protected Ser65 residues, triggering mitophagy. Here we report a crystal structure of a nanobody-stabilized complex containing
Pediculus humanus corporis
(
Ph
)PINK1 bound to ubiquitin in the ‘C-terminally retracted’ (Ub-CR) conformation. The structure reveals many peculiarities of PINK1, including the architecture of the C-terminal region, and reveals how the N lobe of PINK1 binds ubiquitin via a unique insertion. The flexible Ser65 loop in the Ub-CR conformation contacts the activation segment, facilitating placement of Ser65 in a phosphate-accepting position. The structure also explains how autophosphorylation in the N lobe stabilizes structurally and functionally important insertions, and reveals the molecular basis of AR-JP-causing mutations, some of which disrupt ubiquitin binding.
Stabilization of a transient protein kinase–substrate complex using a nanobody provides molecular details about how the Parkinson’s disease-linked protein kinase PINK1 phosphorylates ubiquitin, and suggests new pharmacological strategies.
A study in PINK1
The kinase enzyme PINK1 is known mainly for two reasons. At an organism level, mutations of PINK1 have been associated with autosomal-recessive juvenile Parkinsonism (AR-JP). At a cellular level, PINK1 phosphorylates both ubiquitin and a ubiquitin-like domain within its partner enzyme Parkin to trigger mitophagy, the process by which cells get rid of dysfunctional mitochondria. David Komander and co-authors report the structure of a complex between louse PINK1 and ubiquitin, which they obtained using nanobody-based stabilization. The structure provides molecular insights not only into PINK1–ubiquitin interactions and therefore the mechanism of PINK1 activity, but also into AR-JP-associated mutations, some of which disrupt ubiquitin binding.
Journal Article
The topology, structure and PE interaction of LITAF underpin a Charcot-Marie-Tooth disease type 1C
by
Qamar, Seema
,
Wartosch, Lena
,
Ho, Anita K.
in
Amino Acid Sequence
,
Biology
,
Biomedical and Life Sciences
2016
Background
Mutations in Lipopolysaccharide-induced tumour necrosis factor-α factor (
LITAF
) cause the autosomal dominant inherited peripheral neuropathy, Charcot-Marie-Tooth disease type 1C (CMT1C).
LITAF
encodes a 17 kDa protein containing an N-terminal proline-rich region followed by an evolutionarily-conserved C-terminal ‘LITAF domain’, which contains all reported CMT1C-associated pathogenic mutations.
Results
Here, we report the first structural characterisation of LITAF using biochemical, cell biological, biophysical and NMR spectroscopic approaches. Our structural model demonstrates that LITAF is a monotopic zinc-binding membrane protein that embeds into intracellular membranes via a predicted hydrophobic, in-plane, helical anchor located within the LITAF domain. We show that specific residues within the LITAF domain interact with phosphoethanolamine (PE) head groups, and that the introduction of the V144M CMT1C-associated pathogenic mutation leads to protein aggregation in the presence of PE.
Conclusions
In addition to the structural characterisation of LITAF, these data lead us to propose that an aberrant LITAF-PE interaction on the surface of intracellular membranes contributes to the molecular pathogenesis that underlies this currently incurable disease.
Journal Article
H NMR spectroscopy profiling of metabolic reprogramming of Chinese hamster ovary cells upon a temperature shift during culture
by
Masterton, Rosalyn J
,
Povey, Jane F
,
Smales, C Mark
in
Amino Acids - metabolism
,
Animals
,
Cell Adhesion
2013
We report an NMR based approach to determine the metabolic reprogramming of Chinese hamster ovary cells upon a temperature shift during culture by investigating the extracellular cell culture media and intracellular metabolome of CHOK1 and CHO-S cells during culture and in response to cold-shock and subsequent recovery from hypothermic culturing. A total of 24 components were identified for CHOK1 and 29 components identified for CHO-S cell systems including the observation that CHO-S media contains 5.6 times the level of glucose of CHOK1 media at time zero. We confirm that an NMR metabolic approach provides quantitative analysis of components such as glucose and alanine with both cell lines responding in a similar manner and comparable to previously reported data. However, analysis of lactate confirms a differentiation between CHOK1 and CHO-S and that reprogramming of metabolism in response to temperature was cell line specific. The significance of our results is presented using principal component analysis (PCA) that confirms changes in metabolite profile in response to temperature and recovery. Ultimately, our approach demonstrates the capability of NMR providing real-time analysis to detect reprogramming of metabolism upon cellular perception of cold-shock/sub-physiological temperatures. This has the potential to allow manipulation of metabolites in culture supernatant to improve growth or productivity.
Journal Article
ANXA11 biomolecular condensates facilitate protein-lipid phase coupling on lysosomal membranes
2025
Phase transitions of cellular proteins and lipids play a key role in governing the organisation and coordination of intracellular biology. Recent work has raised the intriguing prospect that phase transitions in proteins and lipids can be co-regulated. Here we investigate this possibility in the ribonucleoprotein (RNP) granule-ANXA11-lysosome ensemble, where ANXA11 tethers RNP granules to lysosomal membranes to enable their co-trafficking. We show that changes to the protein phase state within this system, driven by the low complexity ANXA11 N-terminus, induces a coupled phase state change in the lipids of the underlying membrane. We identify the ANXA11 interacting proteins ALG2 and CALC as potent regulators of ANXA11-based phase coupling and demonstrate their influence on the nanomechanical properties of the ANXA11-lysosome ensemble and its capacity to engage RNP granules. The phenomenon of protein-lipid phase coupling we observe within this system serves as a potential regulatory mechanism in RNA trafficking and offers an important template to understand other examples across the cell whereby biomolecular condensates closely juxtapose organellar membranes.
Nixon-Abell et al. show that ANXA11 condensation on lysosomal membranes causes a coupled phase transition of the underlying lipids and mechanical stiffening of the overall ensemble involved in RNP granule-lysosome tethering and co-trafficking.
Journal Article
1H NMR Spectroscopy Profiling of Metabolic Reprogramming of Chinese Hamster Ovary Cells upon a Temperature Shift during Culture
2013
We report an NMR based approach to determine the metabolic reprogramming of Chinese hamster ovary cells upon a temperature shift during culture by investigating the extracellular cell culture media and intracellular metabolome of CHOK1 and CHO-S cells during culture and in response to cold-shock and subsequent recovery from hypothermic culturing. A total of 24 components were identified for CHOK1 and 29 components identified for CHO-S cell systems including the observation that CHO-S media contains 5.6 times the level of glucose of CHOK1 media at time zero. We confirm that an NMR metabolic approach provides quantitative analysis of components such as glucose and alanine with both cell lines responding in a similar manner and comparable to previously reported data. However, analysis of lactate confirms a differentiation between CHOK1 and CHO-S and that reprogramming of metabolism in response to temperature was cell line specific. The significance of our results is presented using principal component analysis (PCA) that confirms changes in metabolite profile in response to temperature and recovery. Ultimately, our approach demonstrates the capability of NMR providing real-time analysis to detect reprogramming of metabolism upon cellular perception of cold-shock/sub-physiological temperatures. This has the potential to allow manipulation of metabolites in culture supernatant to improve growth or productivity.
Journal Article
ANXA11 biomolecular condensates facilitate protein-lipid phase coupling on lysosomal membranes
2023
Phase transitions of cellular proteins and lipids play a key role in governing the organisation and coordination of intracellular biology. The frequent juxtaposition of proteinaceous biomolecular condensates to cellular membranes raises the intriguing prospect that phase transitions in proteins and lipids could be co-regulated. Here we investigate this possibility in the ribonucleoprotein (RNP) granule-ANXA11-lysosome ensemble, where ANXA11 tethers RNP granule condensates to lysosomal membranes to enable their co-trafficking. We show that changes to the protein phase state within this system, driven by the low complexity ANXA11 N-terminus, induce a coupled phase state change in the lipids of the underlying membrane. We identify the ANXA11 interacting proteins ALG2 and CALC as potent regulators of ANXA11-based phase coupling and demonstrate their influence on the nanomechanical properties of the ANXA11-lysosome ensemble and its capacity to engage RNP granules. The phenomenon of protein-lipid phase coupling we observe within this system offers an important template to understand the numerous other examples across the cell whereby biomolecular condensates closely juxtapose cell membranes.
Journal Article
Cargo selective vesicle tethering: the structural basis for binding of specific cargo proteins by the Golgi tether component TBC1D23
by
Wagstaff, Jane L
,
Peak-Chew, Sew-Yeu
,
Stevens, Tim J
in
Carboxypeptidase D
,
Cell Biology
,
Crystal structure
2023
For accurate membrane traffic it is essential that vesicles and other carriers tether and fuse to only the correct compartment. The TGN-localised golgins golgin-97 and golgin-245 capture transport vesicles arriving from endosomes via the protein TBC1D23 that forms a bridge between the golgins and endosome-derived vesicles. The C-terminal domain of TBC1D23 is responsible for vesicle capture, but how it recognises a specific type of vesicle was unclear. A search for binding partners of the C-terminal domain surprisingly revealed direct binding to carboxypeptidase D (CPD) and syntaxin-16, both known cargo proteins of the captured vesicles. Binding is via a TLY-containing sequence present in both proteins. A crystal structure reveals how this 'acidic TLY motif' binds to the C-terminal domain of TBC1D23. An acidic TLY motif is also present in the tails of other endosome-to-Golgi cargo, and these also bind TBC1D23. Structure-guided mutations in the C-terminal domain that disrupt motif binding in vitro also block vesicle capture in vivo. Thus, TBC1D23 attached to golgin-97 and golgin-245 captures vesicles by a previously undescribed mechanism: the recognition of a motif shared by cargo proteins carried by the vesicle.Competing Interest StatementThe authors have declared no competing interest.
An \invisible\ ubiquitin conformation is required for efficient phosphorylation by PINK1
by
Pruneda, Jonathan N
,
Schubert, Alexander F
,
Gladkova, Christina
in
Kinases
,
Molecular Biology
,
Phosphorylation
2017
The Ser/Thr protein kinase PINK1 phosphorylates the well-folded, globular protein ubiquitin (Ub) at a relatively protected site, Ser65. We had previously shown that Ser65-phosphorylation results in a conformational change, in which Ub adopts a dynamic equilibrium between the known, common Ub conformation and a distinct, second conformation in which the last -strand is retracted to extend the Ser65 loop and shorten the C-terminal tail. We here show using Chemical Exchange Saturation Transfer (CEST) NMR experiments, that a similar, C-terminally retracted (Ub-CR) conformation exists in wild-type Ub. Ub point mutations in the moving 5-strand and in neighbouring strands shift the Ub/Ub-CR equilibrium. This enabled functional studies of the two states, and we show that the Ub-CR conformation binds to the PINK1 kinase domain through its extended Ser65 loop and is a superior PINK1 substrate. Together our data suggest that PINK1 utilises a lowly populated yet more suitable Ub-CR conformation of Ub for efficient phosphorylation. Our findings could be relevant for many kinases that phosphorylate residues in folded proteins or domains.