Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
33 result(s) for "Wang, Bilan"
Sort by:
Current advance of nanotechnology in diagnosis and treatment for malignant tumors
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Nonviral vector system for cancer immunogene therapy
Immunogene therapy has become an effective and significant clinical strategy for cancer therapy. Many immunogene therapies are approved for cancer treatment, and more are undergoing clinical or preclinical trials. Even though most patients benefit greatly from immunogene therapy, the strategies may simply activate the systemic immune response against tumors while also pushing the immune system to supraphysiological levels along with a subsequently increased risk of immune‐related adverse events. Enhancing the response rate to immunogene therapy is key to controlling side effects and improving efficacy. Improved delivery systems can efficiently deliver genes to the desired tumor cells while alleviating adverse reactions and immunogenicity. Thereinto, nonviral vectors improve the permeability, retention, and pharmacokinetic characteristics of drugs, thereby reducing side‐effects and providing broad prospects for enhancing the efficiency of immunotherapy and becoming a leading anticancer candidate. Here, this review highlights the types of common functional nonviral vectors, discusses their advantages and disadvantages, as well as the latest applications in different cancers. Undoubtedly, this review proves that nonviral vectors combined with immunogene therapy are promising treatments for cancers. Nevertheless, further research is needed to solve safety concerns and improve the efficacy of nonviral vectors‐based cancer immunogene therapy for future clinical application. Immunogene therapy has become an effective and significant clinical strategy for cancer therapy. Enhancing the response rate to immunogene therapy is significant to controlling side effects and improving efficacy. Improved nonviral vectors combined with immunogene therapy efficiently deliver genes to the desired tumor cells and activate immune response to fight tumors while alleviating adverse reactions, which is a promising treatment approach for cancer.
Immunostimulatory CKb11 gene combined with immune checkpoint PD-1/PD-L1 blockade activates immune response and simultaneously overcomes the immunosuppression of cancer
Immunosuppression tumor microenvironment (TME) seriously impedes anti-tumor immune response, resulting in poor immunotherapy effect of cancer. This study develops a folate-modified delivery system to transport the plasmids encoding immune stimulatory chemokine CKb11 and PD-L1 inhibitors to tumor cells, resulting in high CKb11 secretion from tumor cells, successfully activating immune cells and increasing cytokine secretion to reshape the TME, and ultimately delaying tumor progression. The chemokine CKb11 enhances the effectiveness of tumor immunotherapy by increasing the infiltration of immune cells in TME. It can cause high expression of IFN-γ, which is a double-edged sword that inhibits tumor growth while causing an increase in the expression of PD-L1 on tumor cells. Therefore, combining CKb11 with PD-L1 inhibitors can counterbalance the suppressive impact of PD-L1 on anti-cancer defense, leading to a collaborative anti-tumor outcome. Thus, utilizing nanotechnology to achieve targeted delivery of immune stimulatory chemokines and immune checkpoint inhibitors to tumor sites, thereby reshaping immunosuppressive TME for cancer treatment, has great potential as an immunogene therapy in clinical applications. [Display omitted] •Immunogene therapy based on CKb11 and iPD-L1 regulates tumor immune microenvironment.•Fa-modified nanomaterials target to tumor cells.•Counterbalance the suppressive impact of PD-L1 on anti-cancer defense, leading to a collaborative anti-tumor outcome.•Reshape immunosuppressive TME for cancer treatment.
Self-Assembled Hydrophobic Honokiol Loaded MPEG-PCL Diblock Copolymer Micelles
Purpose Honokiol showed potential application in cancer treatment, but its poor water solubility restricts its clinical application greatly. So, we designed a self-assembled monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelle to load honokiol to overcome its poor water solubility. Methods We synthesized MPEG-PCL diblock copolymer that could self-assemble into monodisperse micelles at the particle size of ca.18 nm in water. Honokiol was loaded into MPEG-PCL micelle by direct dissolution method assisted by ultrasound, without any surfactants, organic solvents, and vigorous stirring. Results The blank MPEG-PCL micelles (100 mg/mL) did not induce any hemolysis in vitro and showed very low toxicity ex vivo and in vivo. Honokiol could be molecularly incorporated into MPEG-PCL micelles at the drug loading of about 20% by direct dissolution method assisted by ultrasound. After loaded into MPEG-PCL micelles, honokiol maintained its molecular structure and anticancer activity in vitro. Honokiol could be sustained released from MPEG-PCL micelles in vitro. The honokiol loaded MPEG-PCL micelles could be lyophilized without any adjuvant. Conclusion The prepared honokiol formulation based on self-assembled MPEG-PCL micelle was stable, safe, effective, easy to produce and scale up, and showed potential clinical application.
Kinectin 1 promotes the growth of triple-negative breast cancer via directly co-activating NF-kappaB/p65 and enhancing its transcriptional activity
Triple-negative breast cancer (TNBC) is the most challenging subtype of breast cancer. Various endeavor has been made to explore the molecular biology basis of TNBC. Herein, we reported a novel function of factor Kinectin 1 (KTN1) as a carcinogenic promoter in TNBC. KTN1 expression in TNBC was increased compared with adjacent tissues or luminal or Her2 subtypes of breast cancer, and TNBC patients with high KTN1 expression have poor prognosis. In functional studies, knockdown of KTN1 inhibited the proliferation and invasiveness of TNBC both in vitro and in vivo, while overexpression of KTN1 promoted cancer cell proliferation and invasiveness. RNA-seq analysis revealed that the interaction of cytokine-cytokine receptor, particularly CXCL8 gene, was upregulated by KTN1, which was supported by the further experiments. CXCL8 depletion inhibited the tumorigenesis and progression of TNBC. Additionally, rescue experiments validated that KTN1-mediated cell growth acceleration in TNBC was dependent on CXCL8 both in vitro and in vivo. Furthermore, it was found that KTN1 enhanced the phosphorylation of NF-κB/p65 protein at Ser536 site, and specifically bound to NF-κB/p65 protein in the nucleus and cytoplasm of cells. Moreover, the transcription of CXCL8 gene was directly upregulated by the complex of KTN1 and NF-κB/p65 protein. Taken together, our results elucidated a novel mechanism of KTN1 gene in TNBC tumorigenesis and progression. KTN1 may be a potential molecular target for the development of TNBC treatment.
Co-Delivery of Docetaxel and Curcumin via Nanomicelles for Enhancing Anti-Ovarian Cancer Treatment
Ovarian cancer is a stubborn malignancy of gynecological system with a high mortality rate. Docetaxel (DTX), the second-generation of anti-tumor drug Taxane, has shown superior efficacy over classic paclitaxel (PTX) in certain cancers. However, its clinical application is hindered by poor bioavailability. The natural spice extract curcumin (Cur) has been discovered to improve the bioavailability of DTX. Therefore, it is meaningful to develop a combined drug strategy of DTX and Cur with methoxy poly (ethylene glycol)-poly (L-lactic acid) (MPEG-PLA) copolymers in ovarian cancer therapy. Injectable DTX-Cur/M nanomicelles were synthesized and characterized in the study. The molecular interactions between DTX, Cur and copolymer were simulated and the drug release behavior was investigated. The anti-tumor activity and anti-tumor mechanisms of DTX-Cur/M were evaluated and explored in both cells and mice model of xenograft human ovarian cancer. DTX-Cur/M nanomicelles with an average particle size of 37.63 nm were obtained. The drug release experiment showed sustained drug release from DTX-Cur/M nanomicelles. The MTT assay and apoptotic study indicated that DTX-Cur/M exhibited stronger inhibition and pro-apoptotic effects on A2780 cells compared with DTX or Cur alone. In vivo anti-tumor experiment results confirmed that the DTX-Cur/M played the most effective role in anti-ovarian cancer therapy by inhibiting tumor proliferation, suppressing tumor angiogenesis and promoting tumor apoptosis. We designed injectable DTX-Cur/M nanomicelles for co-delivery of DTX and Cur agents to the tumor site through systemic administration. The DTX-Cur/M nanomicelle would be a biodegradable, sustainable and powerful anti-tumor drug candidate with great potential in ovarian cancer treatment.
Employing epigenetic protein degradation techniques to block CCL5-mediated photodynamic therapy via a programmed delivery platform
Despite the significant potential of photodynamic therapy (PDT) in cancer treatment, further refinement is needed to address challenges such as poor tumor-specific accumulation of photosensitizers and the development of therapeutic resistance, which may be regulated by epigenetics. Here, a novel tumor microenvironment-responsive delivery platform was developed to co-deliver epigenetic protein degraders and photosensitizers, aiming to block the relevant regulatory mechanisms and enhance the effectiveness of combination therapy. Benefiting from the targeting ability, pH-triggered charge reversal, and intracellular glutathione (GSH)-responsive release, the delivery platform exhibited enhanced tumor accumulation and therapeutic effects. The mechanism of action revealed that the precise accumulation and release of drugs via the tumor-orchestrated delivery system not only regulated cell growth and immune activation, but also inhibited the expression of tumor immune escape molecules (PDL1 and CD47) and M2 macrophage polarization, significantly increasing the anti-breast cancer and anti-melanoma effects of PDT in the presence of an epigenetic modifier. More importantly, we found for the first time that photodynamic therapy can generate therapeutic resistance through the upregulation of CCL5, and confirmed that this resistance can be reduced by the epigenetic degradation of bromodomain-containing protein 4 (BRD4). These findings underscore the potential of integrating PDT with epigenetic protein degraders through a programmed delivery platform, offering a promising strategy for improving cancer treatment outcomes.
Preparation, characterization and application of star-shaped PCL/PEG micelles for the delivery of doxorubicin in the treatment of colon cancer
Star-shaped polymer micelles have good stability against dilution with water, showing promising application in drug delivery. In this work, biodegradable micelles made from star-shaped poly(ε-caprolactone)/poly(ethylene glycol) (PCL/PEG) copolymer were prepared and used to deliver doxorubicin (Dox) in vitro and in vivo. First, an acrylated monomethoxy poly (ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) diblock copolymer was synthesized, which then self-assembled into micelles, with a core-shell structure, in water. Then, the double bonds at the end of the PCL blocks were conjugated together by radical polymerization, forming star-shaped MPEG-PCL (SSMPEG-PCL) micelles. These SSMPEG-PCL micelles were monodispersed (polydispersity index = 0.11), with mean diameter of ≈25 nm, in water. Blank SSMPEG-PCL micelles had little cytotoxicity and did not induce obvious hemolysis in vitro. The critical micelle concentration of the SSMPEG-PCL micelles was five times lower than that of the MPEG-PCL micelles. Dox was directly loaded into SSMPEG-PCL micelles by a pH-induced self-assembly method. Dox loading did not significantly affect the particle size of SSMPEG-PCL micelles. Dox-loaded SSMPEG-PCL (Dox/SSMPEG-PCL) micelles slowly released Dox in vitro, and the Dox release at pH 5.5 was faster than that at pH 7.0. Also, encapsulation of Dox in SSMPEG-PCL micelles enhanced the anticancer activity of Dox in vitro. Furthermore, the therapeutic efficiency of Dox/SSMPEG-PCL on colon cancer mouse model was evaluated. Dox/SSMPEG-PCL caused a more significant inhibitory effect on tumor growth than did free Dox or controls (P < 0.05), which indicated that Dox/SSMPEG-PCL had enhanced anticolon cancer activity in vivo. Analysis with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) showed that Dox/SSMPEG-PCL induced more tumor cell apoptosis than free Dox or controls. These results suggested that SSMPEG-PCL micelles have promising application in doxorubicin delivery for the enhancement of anticancer effect.
Biodegradable and thermosensitive micelles inhibit ischemia-induced postoperative peritoneal adhesion
Ischemia-induced adhesion is very common after surgery, and leads to severe abdominal adhesions. Unfortunately, many existing barrier agents used for adhesion prevention have only limited success. The objective of this study is to evaluate the efficacy of biodegradable and thermosensitive poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL) micelles for the prevention of postoperative ischemia-induced adhesion. We found that the synthesized PCL-PEG-PCL copolymer could self-assemble in an aqueous solution to form micelles with a mean size of 40.1 ± 2.7 nm at 10°C, and the self-assembled micelles could instantly turn into a nonflowing gel at body temperature. In vitro cytotoxicity tests suggested that the copolymer showed little toxicity on NIH-3T3 cells even at amounts up to 1,000 μg/mL. In the in vivo test, the postsurgical ischemic-induced peritoneal adhesion model was established and then treated with the biodegradable and thermosensitive micelles. In the control group (n=12), all animals developed adhesions (mean score, 3.58 ± 0.51), whereas three rats in the micelles-treated group (n=12) did not develop any adhesions (mean score, 0.67 ± 0.78; P<0.001, Mann-Whitney U-test). Both hematoxylin and eosin and Masson trichrome staining of the ischemic tissues indicated that the micelles demonstrated excellent therapeutic effects on ischemia-induced adhesion. On Day 7 after micelle treatment, a layer of neo-mesothelial cells emerged on the injured tissues, which confirmed the antiadhesion effect of the micelles. The thermosensitive micelles had no significant side effects in the in vivo experiments. These results suggested that biodegradable and thermosensitive PCL-PEG-PCL micelles could serve as a potential barrier agent to reduce the severity of and even prevent the formation of ischemia-induced adhesions.