MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Biodegradable and thermosensitive micelles inhibit ischemia-induced postoperative peritoneal adhesion
Biodegradable and thermosensitive micelles inhibit ischemia-induced postoperative peritoneal adhesion
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Biodegradable and thermosensitive micelles inhibit ischemia-induced postoperative peritoneal adhesion
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Biodegradable and thermosensitive micelles inhibit ischemia-induced postoperative peritoneal adhesion
Biodegradable and thermosensitive micelles inhibit ischemia-induced postoperative peritoneal adhesion

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Biodegradable and thermosensitive micelles inhibit ischemia-induced postoperative peritoneal adhesion
Biodegradable and thermosensitive micelles inhibit ischemia-induced postoperative peritoneal adhesion
Journal Article

Biodegradable and thermosensitive micelles inhibit ischemia-induced postoperative peritoneal adhesion

2014
Request Book From Autostore and Choose the Collection Method
Overview
Ischemia-induced adhesion is very common after surgery, and leads to severe abdominal adhesions. Unfortunately, many existing barrier agents used for adhesion prevention have only limited success. The objective of this study is to evaluate the efficacy of biodegradable and thermosensitive poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL) micelles for the prevention of postoperative ischemia-induced adhesion. We found that the synthesized PCL-PEG-PCL copolymer could self-assemble in an aqueous solution to form micelles with a mean size of 40.1 ± 2.7 nm at 10°C, and the self-assembled micelles could instantly turn into a nonflowing gel at body temperature. In vitro cytotoxicity tests suggested that the copolymer showed little toxicity on NIH-3T3 cells even at amounts up to 1,000 μg/mL. In the in vivo test, the postsurgical ischemic-induced peritoneal adhesion model was established and then treated with the biodegradable and thermosensitive micelles. In the control group (n=12), all animals developed adhesions (mean score, 3.58 ± 0.51), whereas three rats in the micelles-treated group (n=12) did not develop any adhesions (mean score, 0.67 ± 0.78; P<0.001, Mann-Whitney U-test). Both hematoxylin and eosin and Masson trichrome staining of the ischemic tissues indicated that the micelles demonstrated excellent therapeutic effects on ischemia-induced adhesion. On Day 7 after micelle treatment, a layer of neo-mesothelial cells emerged on the injured tissues, which confirmed the antiadhesion effect of the micelles. The thermosensitive micelles had no significant side effects in the in vivo experiments. These results suggested that biodegradable and thermosensitive PCL-PEG-PCL micelles could serve as a potential barrier agent to reduce the severity of and even prevent the formation of ischemia-induced adhesions.