Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
768
result(s) for
"Wang, Bo-Wei"
Sort by:
Aucubin Protects Chondrocytes Against IL-1β-Induced Apoptosis In Vitro And Inhibits Osteoarthritis In Mice Model
2019
Chondrocyte apoptosis has also been strongly correlated with the severity of cartilage damage and matrix depletion in an osteoarthritis (OA) joint. Therefore, pharmacological inhibitors of apoptosis may provide a novel treatment option for patients with OA. Aucubin, a natural compound isolated from
, has been proved to possess antioxidative and anti-apoptotic properties. However, anti-osteoarthritis effect of aucubin in animal model and anti-apoptotic response of aucubin in OA chondrocytes remain unclear. This study aimed to determine whether aucubin could slow progression of OA in a mouse model and inhibit the IL-1β-induced chondrocyte apoptosis.
OA severity and articular cartilage degradation were evaluated by Safranin-O staining, Hematoxylin-eosin (H&E) staining, and Osteoarthritis Research Society International (OARSI) standards. Chondrocyte viability was observed by Cell Counting Kit-8 (CCK8) and live/dead cells assay; the apoptotic rate of chondrocytes was evaluated by flow cytometry (FCM) with Annexin V-FITC/PI kit. Mediators of apoptosis were tested by Western blot of Bax, caspase-3, caspase-9, and Bcl-2 expression. The intracellular levels of Reactive oxygen species (ROS) were assessed by the probe of 2,7-Dichlorofluorescin diacetate (DCFH-DA).
The articular cartilage in the limb with destabilization of the medial meniscus (DMM) exhibited early OA-like manifestations characterized by proteoglycan loss, cartilage fibrillation, and erosion, with lower OARSI score. Oral administration of aucubin remarkably attenuated the loss of proteoglycan and the articular cartilage erosion and decreased the OARSI scores underwent DMM surgery. Aucubin treatment significantly reverses IL-1β-induced cytotoxicity and attenuated the IL-1β-induced chondrocyte apoptosis. In addition, aucubin can significantly inhibit mediators of apoptosis in rat primary chondrocytes. Furthermore, aucubin remarkably attenuated the IL-1β-induced intracellular ROS production.
Our findings suggest that aucubin has a protective effect on articular cartilage and slowing progression of OA in a mouse model. This protective effect may result from inhibiting chondrocyte apoptosis and excessive ROS production.
Journal Article
Specific inactivation of an antifungal bacterial siderophore by a fungal plant pathogen
2021
Bacteria and fungi secrete many natural products that inhibit each other’s growth and development. The dynamic changes in secreted metabolites that occur during interactions between bacteria and fungi are complicated. Pyochelin is a siderophore produced by many
Pseudomonas
and
Burkholderia
species that induces systemic resistance in plants and has been identified as an antifungal agent. Through imaging mass spectrometry and metabolomics analysis, we found that
Phellinus noxius
, a plant pathogen, can modify pyochelin and
ent
-pyochelin to an esterification product, resulting in reduced iron-chelation and loss of antifungal activity. We also observed that dehydroergosterol peroxide, the fungal metabolite, is only accumulated in the presence of pyochelin produced through bacteria–fungi interactions. For the first time, we show the fungal transformation of pyochelin in the microbial interaction. Our findings highlight the importance of understanding the dynamic changes of metabolites in microbial interactions and their influences on microbial communities.
Journal Article
Calcium sulfate induced versus PMMA-induced membrane in a critical-sized femoral defect in a rat model
2018
Aimed to investigate the characteristics of CS-induced membrane in comparison with the PMMA-induced membrane. Cellular components, histological changes, growth factor expressions of IL-6, VEGF, BMP-2, and TGF-β1 in the two induced membranes were compared at 2, 4, 6 and 8 weeks, respectively. We also compared the histological changes at the bone defects between CS and PMMA groups. The structural characteristics of induced membrane were similar between CS and PMMA. Endochondral ossification took place in the CS-induced membrane at 8 week. Levels of VEGF, BMP-2 and TGF-β1 in CS-induced membrane were insignificantly higher than those in PMMA-induced membrane at different time points. The expression of IL-6 was significantly higher in PMMA-induced membranes at 2nd week. In addition, osteogenic and neovascular activities of induced membranes increased with time and peaked at 6 weeks. CS promoted endochondral ossification at the broken ends of the bone defect than PMMA did. CS-induced membrane has a better capacity of generating VEGF, BMP-2 and TGF-β1.osteogenic and neovascular activities achieve highest level at 6 week. CS may have the potential to replace PMMA as a novel spacer in Masquelet technique.
Journal Article
Decomposed Collaborative Modeling Approach for Probabilistic Fatigue Life Evaluation of Turbine Rotor
2020
To improve simulation accuracy and efficiency of probabilistic fatigue life evaluation for turbine rotor, a decomposed collaborative modeling approach is presented. In this approach, the intelligent Kriging modeling (IKM) is firstly proposed by combining the Kriging model (KM) and an intelligent algorithm (named as dynamic multi-island genetic algorithm), to tackle the multi-modality issues for obtaining optimal Kriging parameters. Then, the decomposed collaborative IKM (DCIKM) comes up by fusing the IKM into decomposed collaborative (DC) strategy, to address the high-nonlinearity problems for accelerating simulation efficiency. Moreover, the DCIKM-based probabilistic fatigue life evaluation theory is introduced. The probabilistic fatigue life evaluation of turbine rotor is regarded as case study to verify the presented approach; the evaluation results reveal that the probabilistic fatigue life of turbine rotor is 3296 cycles. The plastic strain range ∆εp and fatigue strength coefficient σf′ are the main affecting factors to fatigue life, whose effect probability are 28% and 22%, respectively. By comparing with direct Monte Carlo method, KM method, IKM method and DC response surface method, the presented DCIKM is validated to hold high efficiency and accuracy in probabilistic fatigue life evaluation.
Journal Article
PKCδ-mediated SGLT1 upregulation confers the acquired resistance of NSCLC to EGFR TKIs
2021
The tyrosine kinase inhibitors (TKIs) targeting epidermal growth factor receptor (EGFR) have been widely used for non-small cell lung cancer (NSCLC) patients, but the development of acquired resistance remains a therapeutic hurdle. The reduction of glucose uptake has been implicated in the anti-tumor activity of EGFR TKIs. In this study, the upregulation of the active sodium/glucose co-transporter 1 (SGLT1) was found to confer the development of acquired EGFR TKI resistance and was correlated with the poorer clinical outcome of the NSCLC patients who received EGFR TKI treatment. Blockade of SGLT1 overcame this resistance in vitro and in vivo by reducing glucose uptake in NSCLC cells. Mechanistically, SGLT1 protein was stabilized through the interaction with PKCδ-phosphorylated (Thr678) EGFR in the TKI-resistant cells. Our findings revealed that PKCδ/EGFR axis-dependent SGLT1 upregulation was a critical mechanism underlying the acquired resistance to EGFR TKIs. We suggest co-targeting PKCδ/SGLT1 as a potential strategy to improve the therapeutic efficacy of EGFR TKIs in NSCLC patients.
Journal Article
Cigarette smoke-induced LKB1/AMPK pathway deficiency reduces EGFR TKI sensitivity in NSCLC
2021
Smoker patients with non-small cell lung cancer (NSCLC) have poorer prognosis and survival than those without smoking history. However, the mechanisms underlying the low response rate of those patients to EGFR tyrosine kinase inhibitors (TKIs) are not well understood. Here we report that exposure to cigarette smoke extract enhances glycolysis and attenuates AMP-activated protein kinase (AMPK)-dependent inhibition of mTOR; this in turn reduces the sensitivity of NSCLC cells with wild-type EGFR (EGFR
WT
) to EGFR TKI by repressing expression of liver kinase B1 (LKB1), a master kinase of the AMPK subfamily, via CpG island methylation. In addition, LKB1 expression is correlated positively with sensitivity to TKI in patients with NSCLC. Moreover, combined treatment of EGFR TKI with AMPK activators synergistically increases EGFR TKI sensitivity. Collectively, the current study suggests that LKB1 may serve as a marker to predict EGFR TKI sensitivity in smokers with NSCLC carrying EGFR
WT
and that the combination of EGFR TKI and AMPK activator may be a potentially effective therapeutic strategy against NSCLC with EGFR
WT
.
Journal Article
Intranasal Immunization with Zika Virus Envelope Domain III-Flagellin Fusion Protein Elicits Systemic and Mucosal Immune Responses and Protection against Subcutaneous and Intravaginal Virus Challenges
2022
Zika virus (ZIKV) infections in humans are mainly transmitted by the mosquito vectors, but human-to-human sexual transmission is also another important route. Developing a ZIKV mucosal vaccine that can elicit both systemic and mucosal immune responses is of particular interest. In this study, we constructed a recombinant ZIKV envelope DIII (ZDIII) protein genetically fused with Salmonella typhimurium flagellin (FliC-ZDIII) as a novel mucosal antigen for intranasal immunization. The results indicated that the FliC-ZDIII fusion proteins formulated with E. coli heat-labile enterotoxin B subunit (LTIIb-B5) adjuvant greatly increased the ZDIII-specific IgG, IgA, and neutralizing titers in sera, and the ZDIII-specific IgA titers in bronchoalveolar lavage and vaginal fluids. Protective immunity was further assessed by subcutaneous and intravaginal ZIKV challenges. The second-generation FliCΔD3-2ZDIII was shown to result in a reduced titer of anti-FliC IgG antibodies in sera and still retained the same levels of serum IgG, IgA, and neutralizing antibodies and mucosal IgA antibodies without compromising the vaccine antigenicity. Therefore, intranasal immunization with FliCΔD3-2ZDIII fusion proteins formulated with LTIIb-B5 adjuvant elicited the greatest protective immunity against subcutaneous and intravaginal ZIKV challenges. Our findings indicated that the combination of FliCΔD3-2ZDIII fusion proteins and LTIIb-B5 adjuvant for intranasal immunization can be used for developing ZIKV mucosal vaccines.
Journal Article
Prevention of Dexmedetomidine on Postoperative Delirium and Early Postoperative Cognitive Dysfunction in Elderly Patients Undergoing Thoracoscopic Lobectomy
2022
Objective. To investigate the effect of dexmedetomidine on postoperative cognitive function and delirium in elderly patients undergoing thoracoscopic lobectomy. Methods. 109 elderly patients (age is more than 65 years) who underwent thoracoscopic lobectomy in our hospital from June 2020 to Feb 2022 were randomly divided into the dexmedetomidine (DEX) group (n = 54) and the control group (n = 55). The patients in the experimental group were given dexmedetomidine by intravenous pump, intravenous pump 0.5 μg/kg within 10 minutes, and maintained the speed of 0.5 μg/(kg. h) to 30 min before the operation was ended. The control group was given the same amount of normal saline. Delirium assessment-severity (CAM-S) assessment and Mini-Cog were used to assess the severity levels of POD and POCD 24 h before, 6 hours after, one day after the operation, three days after the operation, and 1 week after the operation. Serum TNF-αα and NSE levels were assessed by using enzyme-linked immunosorbent assay. NRS pain marks were assessed in the DEX group at postanesthesia care unit (PACU) and 24 postoperation. Surgical pierhysmographic index (SPI) evaluation was performed at five time points. Results. The Mini-Cog scores in the DEX group were markedly enhanced compared with those in the saline group 6 and 24 hours after the operation. The SPI values in the DEX group were markedly reduced within 2 min after intubation and at surgical sutures. Moreover, the CAM scores in the DEX group were markedly reduced 24 hours after the operation. Tumor necrosis factor-α (TNF-α) and neuron-specific enolase (NSE) levels were significantly decreased in the DEX group at T1∼T3. Conclusion. The use of dexmedetomidine in the thoracoscopic lobectomy in elderly patients could reduce the occurrence and severity of postoperative cognitive dysfunction and delirium.
Journal Article
SAF-189s, a potent new-generation ROS1 inhibitor, is active against crizotinib-resistant ROS1 mutant-driven tumors
by
Fang, Yan-fen
,
Ai, Jing
,
Geng, Mei-yu
in
Animals
,
Antineoplastic Agents - therapeutic use
,
Antitumor activity
2021
The ROS1 fusion kinase is an attractive antitumor target. Though with significant clinical efficacy, the well-known first-generation ROS1 inhibitor (ROS1i) crizotinib inevitably developed acquired resistance due to secondary point mutations in the ROS1 kinase. Novel ROS1is effective against mutations conferring secondary crizotinib resistance, especially G2032R, are urgently needed. In the present study, we evaluated the antitumor efficacy of SAF-189s, the new-generation ROS1/ALK inhibitor, against ROS1 fusion wild-type and crizotinib-resistant mutants. We showed that SAF-189s potently inhibited ROS1 kinase and its known acquired clinically resistant mutants, including the highly resistant G2032R mutant. SAF-189s displayed subnanomolar to nanomolar IC
50
values against ROS1 wild-type and mutant kinase activity and a selectivity vs. other 288 protein kinases tested. SAF-189s blocked cellular ROS1 signaling, and in turn potently inhibited the cell proliferation in HCC78 cells and BaF3 cells expressing ROS1 fusion wild-type and resistance mutants. In nude mice bearing BaF3/CD74–ROS1 or BaF3/CD74–ROS1
G2032R
xenografts, oral administration of SAF-189s dose dependently suppressed the growth of both ROS1 wild-type- and G2032R mutant-driven tumors. In a patient-derived xenograft model of SDC4–ROS1 fusion NSCLC, oral administration of SAF-189s (20 mg/kg every day) induced tumor regression and exhibited notable prolonged and durable efficacy. In addition, SAF-189s was more potent than crizotinib and comparable to lorlatinib, the most advanced ROS1i known against the ROS1
G2032R
. Collectively, these results suggest the promising potential of SAF-189s for the treatment of patients with the ROS1 fusion G2032R mutation who relapse on crizotinib. It is now recruiting both crizotinib-relapsed and naive ROS1-positive NSCLC patients in a multicenter phase II trial (ClinicalTrials.gov Identifier: NCT04237805).
Journal Article
Pim1 Kinase Inhibitors Exert Anti-Cancer Activity Against HER2-Positive Breast Cancer Cells Through Downregulation of HER2
2021
The proviral integration site for moloney murine leukemia virus 1 (Pim1) is a serine/threonine kinase and able to promote cell proliferation, survival and drug resistance. Overexpression of Pim1 has been observed in many cancer types and is associated with the poor prognosis of breast cancer. However, it remains unclear whether Pim1 kinase is a potential therapeutic target for breast cancer patients. In this study, we found that Pim1 expression was strongly associated with HER2 expression and that HER2-overexpressing breast cancer cells were more sensitive to Pim1 inhibitor-induced inhibitions of cell viability and metastatic ability. Mechanistically, Pim1 inhibitor suppressed the expression of HER2 at least in part through transcriptional level. More importantly, Pim1 inhibitor overcame the resistance of breast cancer cells to HER2 tyrosine kinase inhibitor lapatinib. In summary, downregulation of HER2 by targeting Pim1 may be a promising and effective therapeutic approach not only for anti-cancer growth but also for circumventing lapatinib resistance in HER2-positive breast cancer patients.
Journal Article