Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
89
result(s) for
"Wang, Hengbin"
Sort by:
Maize-YOLO: A New High-Precision and Real-Time Method for Maize Pest Detection
2023
The frequent occurrence of crop pests and diseases is one of the important factors leading to the reduction of crop quality and yield. Since pests are characterized by high similarity and fast movement, this poses a challenge for artificial intelligence techniques to identify pests in a timely and accurate manner. Therefore, we propose a new high-precision and real-time method for maize pest detection, Maize-YOLO. The network is based on YOLOv7 with the insertion of the CSPResNeXt-50 module and VoVGSCSP module. It can improve network detection accuracy and detection speed while reducing the computational effort of the model. We evaluated the performance of Maize-YOLO in a typical large-scale pest dataset IP102. We trained and tested against those pest species that are more damaging to maize, including 4533 images and 13 classes. The experimental results show that our method outperforms the current state-of-the-art YOLO family of object detection algorithms and achieves suitable performance at 76.3% mAP and 77.3% recall. The method can provide accurate and real-time pest detection and identification for maize crops, enabling highly accurate end-to-end pest detection.
Journal Article
Cropformer: A new generalized deep learning classification approach for multi-scenario crop classification
2023
Accurate and efficient crop classification using remotely sensed data can provide fundamental and important information for crop yield estimation. Existing crop classification approaches are usually designed to be strong in some specific scenarios but not for multi-scenario crop classification. In this study, we proposed a new deep learning approach for multi-scenario crop classification, named Cropformer. Cropformer can extract global features and local features, to solve the problem that current crop classification methods extract a single feature. Specifically, Cropformer is a two-step classification approach, where the first step is self-supervised pre-training to accumulate knowledge of crop growth, and the second step is a fine-tuned supervised classification based on the weights from the first step. The unlabeled time series and the labeled time series are used as input for the first and second steps respectively. Multi-scenario crop classification experiments including full-season crop classification, in-season crop classification, few-sample crop classification, and transfer of classification models were conducted in five study areas with complex crop types and compared with several existing competitive approaches. Experimental results showed that Cropformer can not only obtain a very significant accuracy advantage in crop classification, but also can obtain higher accuracy with fewer samples. Compared to other approaches, the classification performance of Cropformer during model transfer and the efficiency of the classification were outstanding. The results showed that Cropformer could build up a priori knowledge using unlabeled data and learn generalized features using labeled data, making it applicable to crop classification in multiple scenarios.
Journal Article
PCGF6 controls neuroectoderm specification of human pluripotent stem cells by activating SOX2 expression
2022
Polycomb group (PcG) proteins are known to repress developmental genes during embryonic development and tissue homeostasis. Here, we report that PCGF6 controls neuroectoderm specification of human pluripotent stem cells (PSCs) by activating
SOX2
gene. Human PSCs with PCGF6 depletion display impaired neuroectoderm differentiation coupled with increased mesendoderm outcomes. Transcriptome analysis reveals that de-repression of the WNT/β-catenin signaling pathway is responsible for the differentiation of PSC toward the mesendodermal lineage. Interestingly, PCGF6 and MYC directly interact and co-occupy a distal regulatory element of SOX2 to activate SOX2 expression, which likely accounts for the regulation in neuroectoderm differentiation. Supporting this notion, genomic deletion of the SOX2-regulatory element phenocopies the impaired neuroectoderm differentiation, while overexpressing SOX2 rescues the neuroectoderm phenotype caused by PCGF6-depletion. Together, our study reveals that PCGF6 can function as lineage switcher between mesendoderm and neuroectoderm in human PSCs by both suppression and activation mechanisms.
Variant Polycomb complexes can have tissue-specific roles during development. Here they show that PCGF6 controls lineage-specification in human PSCs by promoting neuroectoderm differentiation and repressing mesendoderm differentiation via distinct downstream targets.
Journal Article
Editorial: Epigenetic and molecular control of development and germ cell fate determination
2023
During the pachytene stage in mammalian meiosis, the X and Y chromosomes remain largely unsynapsed and were wrapped into a structure called the “sex body” (Solari, 1974; Turner, 2015). Several proteins, including the DNA damage response factors, the downstream Fanconi anemia proteins, and canonical repressive histone modifications, have been reported in the sex body, yet the formation, structure, and function of this special functional domain remain largely unknown. [...]this study revealed a critical role of recognizing H2AK119ub in the function of RSF1 in Xenopus development.
Journal Article
Role of histone H2A ubiquitination in Polycomb silencing
2004
Covalent modification of histones is important in regulating chromatin dynamics and transcription
1
,
2
. One example of such modification is ubiquitination, which mainly occurs on histones H2A and H2B
3
. Although recent studies have uncovered the enzymes involved in histone H2B ubiquitination
4
,
5
,
6
and a ‘cross-talk’ between H2B ubiquitination and histone methylation
7
,
8
, the responsible enzymes and the functions of H2A ubiquitination are unknown. Here we report the purification and functional characterization of an E3 ubiquitin ligase complex that is specific for histone H2A. The complex, termed hPRC1L (human Polycomb repressive complex 1-like), is composed of several Polycomb-group proteins including Ring1, Ring2, Bmi1 and HPH2. hPRC1L monoubiquitinates nucleosomal histone H2A at lysine 119. Reducing the expression of Ring2 results in a dramatic decrease in the level of ubiquitinated H2A in HeLa cells. Chromatin immunoprecipitation analysis demonstrated colocalization of dRing with ubiquitinated H2A at the PRE and promoter regions of the
Drosophila Ubx
gene in wing imaginal discs. Removal of dRing in SL2 tissue culture cells by RNA interference resulted in loss of H2A ubiquitination concomitant with derepression of
Ubx
. Thus, our studies identify the H2A ubiquitin ligase, and link H2A ubiquitination to Polycomb silencing.
Journal Article
Antibacterial Ingredients and Modes of the Methanol-Phase Extract from the Fruit of Amomum villosum Lour
by
Wang, Hengbin
,
Chen, Lanming
,
Cao, Fengfeng
in
Amomum villosum
,
Amomum villosum Lour
,
Antibacterial activity
2024
Epidemics of infectious diseases threaten human health and society stability. Pharmacophagous plants are rich in bioactive compounds that constitute a safe drug library for antimicrobial agents. In this study, we have deciphered for the first time antibacterial ingredients and modes of the methanol-phase extract (MPE) from the fruit of Amomum villosum Lour. The results have revealed that the antibacterial rate of the MPE was 63.64%, targeting 22 species of common pathogenic bacteria. The MPE was further purified by high performance liquid chromatography (Prep-HPLC), and three different constituents (Fractions 1–3) were obtained. Of these, the Fraction 2 treatment significantly increased the cell membrane fluidity and permeability, reduced the cell surface hydrophobicity, and damaged the integrity of the cell structure, leading to the leakage of cellular macromolecules of Gram-positive and Gram-negative pathogens (p < 0.05). Eighty-nine compounds in Fraction 2 were identified by ultra HPLC-mass spectrometry (UHPLC-MS) analysis, among which 4-hydroxyphenylacetylglutamic acid accounted for the highest 30.89%, followed by lubiprostone (11.86%), miltirone (10.68%), and oleic acid (10.58%). Comparative transcriptomics analysis revealed significantly altered metabolic pathways in the representative pathogens treated by Fraction 2 (p < 0.05), indicating multiple antibacterial modes. Overall, this study first demonstrates the antibacterial activity of the MPE from the fruit of A. villosum Lour., and should be useful for its application in the medicinal and food preservative industries against common pathogens.
Journal Article
Efficient, ultra-high-affinity chromatography in a one-step purification of complex proteins
by
Higgins, N. Patrick
,
Wang, Hengbin
,
Chow, Louise T.
in
Affinity
,
Affinity chromatography
,
Binding
2017
Protein purification is an essential primary step in numerous biological studies. It is particularly significant for the rapidly emerging high-throughput fields, such as proteomics, interactomics, and drug discovery. Moreover, purifications for structural and industrial applications should meet the requirement of high yield, high purity, and high activity (HHH). It is, therefore, highly desirable to have an efficient purification system with a potential to meet the HHH benchmark in a single step. Here, we report a chromatographic technology based on the ultra-high-affinity (K
d ∼ 10−14–10−17 M) complex between the Colicin E7 DNase (CE7) and its inhibitor, Immunity protein 7 (Im7). For this application, we mutated CE7 to create a CL7 tag, which retained the full binding affinity to Im7 but was inactivated as a DNase. To achieve high capacity, we developed a protocol for a large-scale production and highly specific immobilization of Im7 to a solid support. We demonstrated its utility with one-step HHH purification of a wide range of traditionally challenging biological molecules, including eukaryotic, membrane, toxic, and multisubunit DNA/RNA-binding proteins. The system is simple, reusable, and also applicable to pulldown and kinetic activity/binding assays.
Journal Article
Regulation of cell cycle progression and gene expression by H2A deubiquitination
by
Tempst, Paul
,
Chang, Chenbei
,
Wang, Hengbin
in
Animals
,
Biological and medical sciences
,
Cell cycle
2007
Post-translational histone modifications have important regulatory roles in chromatin structure and function. One example of such modifications is histone ubiquitination, which occurs predominately on histone H2A and H2B. Although the recent identification of the ubiquitin ligase for histone H2A has revealed important roles for H2A ubiquitination in Hox gene silencing as well as in X-chromosome inactivation, the enzyme(s) involved in H2A deubiquitination and the function of H2A deubiquitination are not known. Here we report the identification and functional characterization of the major deubiquitinase for histone H2A, Ubp-M (also called USP16). Ubp-M prefers nucleosomal substrates in vitro, and specifically deubiquitinates histone H2A but not H2B in vitro and in vivo. Notably, knockdown of Ubp-M in HeLa cells results in slow cell growth rates owing to defects in the mitotic phase of the cell cycle. Further studies reveal that H2A deubiquitination by Ubp-M is a prerequisite for subsequent phosphorylation of Ser 10 of H3 and chromosome segregation when cells enter mitosis. Furthermore, we demonstrate that Ubp-M regulates Hox gene expression through H2A deubiquitination and that blocking the function of Ubp-M results in defective posterior development in Xenopus laevis. This study identifies the major deubiquitinase for histone H2A and demonstrates that H2A deubiquitination is critically involved in cell cycle progression and gene expression.
Journal Article
STRAP regulates alternative splicing fidelity during lineage commitment of mouse embryonic stem cells
2020
Alternative splicing (AS) is involved in cell fate decisions and embryonic development. However, regulation of these processes is poorly understood. Here, we have identified the serine threonine kinase receptor-associated protein (STRAP) as a putative spliceosome-associated factor. Upon
Strap
deletion, there are numerous AS events observed in mouse embryoid bodies (EBs) undergoing a neuroectoderm-like state. Global mapping of STRAP-RNA binding in mouse embryos by enhanced-CLIP sequencing (eCLIP-seq) reveals that STRAP preferably targets transcripts for nervous system development and regulates AS through preferred binding positions, as demonstrated for two neuronal-specific genes,
Nnat
and
Mark3
. We have found that STRAP involves in the assembly of 17S U2 snRNP proteins. Moreover, in
Xenopus
, loss of
Strap
leads to impeded lineage differentiation in embryos, delayed neural tube closure, and altered exon skipping. Collectively, our findings reveal a previously unknown function of STRAP in mediating the splicing networks of lineage commitment, alteration of which may be involved in early embryonic lethality in mice.
STRAP (serine threonine kinase receptor-associated protein) promotes tumorigenicity. Here the authors report that STRAP associates with spliceosome and regulates alternative splicing during embryonic stem cell lineage commitment and early mouse embryo organogenesis.
Journal Article
Functional Dynamics of Arginine Mono- and Di-Methylation
2025
Arginine methylation is a crucial post-translational modification (PTM) that plays a significant role in various biological processes. It occurs in two primary forms: mono-methylation (MMA) and di-methylation (DMA), with the latter further classified into symmetric (SDMA) and asymmetric methylation (ADMA). This review examines the functional implications of these methylation states, current detection methodologies, proteomics-based analytical approaches, and the different impacts of these methylations on protein function. Finally, the role of protein arginine methyltransferases (PRMTs) and their substrate specificity in shaping the arginine methylome are discussed.
Journal Article