Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
21,033 result(s) for "Wang, Michael"
Sort by:
Spatiotemporal single-cell RNA sequencing of developing chicken hearts identifies interplay between cellular differentiation and morphogenesis
Single-cell RNA sequencing is a powerful tool to study developmental biology but does not preserve spatial information about tissue morphology and cellular interactions. Here, we combine single-cell and spatial transcriptomics with algorithms for data integration to study the development of the chicken heart from the early to late four-chambered heart stage. We create a census of the diverse cellular lineages in developing hearts, their spatial organization, and their interactions during development. Spatial mapping of differentiation transitions in cardiac lineages defines transcriptional differences between epithelial and mesenchymal cells within the epicardial lineage. Using spatially resolved expression analysis, we identify anatomically restricted expression programs, including expression of genes implicated in congenital heart disease. Last, we discover a persistent enrichment of the small, secreted peptide, thymosin beta-4, throughout coronary vascular development. Overall, our study identifies an intricate interplay between cellular differentiation and morphogenesis. Using single-cell and spatial transcriptomics in chicken hearts, here, the authors generate a census of cellular interactions from early to late four-chambered heart stage, identifying a distinct epicardial-mesenchymal cell population with a migratory phenotype.
China and the West : McMaster and Pillsbury vs. Mahbubani and Wang
\"Increasingly in the West, China is being characterized as a threat to the liberal international order, one that must be overcome through economic, political, technological, and even military means. For those who believe that the policies of the Chinese Communist Party pose a threat to free and open societies, the U.S. and like-minded nations must band together to preserve a rules-based international order. For others, this approach spells disaster; it ignores the history and dynamics propelling China's rise to superpower status. Rather than threatening the post-war order, China is its best, and maybe only, guarantor in an era of declining U.S. leadership, increased regional instability, and slowing global growth. The twenty-fourth semi-annual Munk Debate, held on May 9, 2019, pits former Assistant to the President for National Security Affairs H.R. McMaster and Director for Chinese Strategy at the D.C.-based Hudson Institute think tank Michael Pillsbury against former President of the United Nations Security Council Kishore Mahbubani and president of one of China's top independent think tanks, the Center for China Globalization, Huiyao Wang to debate the threat of China to the liberal international order.\"-- Provided by publisher.
Enabling “lithium-free” manufacturing of pure lithium metal solid-state batteries through in situ plating
The coupling of solid-state electrolytes with a Li-metal anode and state-of-the-art (SOA) cathode materials is a promising path to develop inherently safe batteries with high energy density (>1000 Wh L −1 ). However, integrating metallic Li with solid-electrolytes using scalable processes is not only challenging, but also adds extraneous volume since SOA cathodes are fully lithiated. Here we show the potential for “Li-free” battery manufacturing using the Li 7 La 3 Zr 2 O 12 (LLZO) electrolyte. We demonstrate that Li-metal anodes >20 μm can be electroplated onto a current collector in situ without LLZO degradation and we propose a model to relate electrochemical and nucleation behavior. A full cell consisting of in situ formed Li, LLZO, and NCA is demonstrated, which exhibits stable cycling over 50 cycles with high Coulombic efficiencies. These findings demonstrate the viability of “Li-free” configurations using LLZO which may guide the design and manufacturing of high energy density solid-state batteries. While the impetus to develop lithium metal solid-state batteries is clear, identifying a practical manufacturing process is challenging. Herewith, authors study the underlying mechanisms controlling in-situ anode formation that could enable viable lithium-free manufacturing.
Nanopore-based detection of circulating microRNAs in lung cancer patients
MicroRNAs are short RNA molecules that regulate gene expression, and have been investigated as potential biomarkers because their expression levels are correlated with various diseases. However, detecting microRNAs in the bloodstream remains difficult because current methods are not sufficiently selective or sensitive. Here, we show that a nanopore sensor based on the α-haemolysin protein can selectively detect microRNAs at the single molecular level in plasma samples from lung cancer patients without the need for labels or amplification of the microRNA. The sensor, which uses a programmable oligonucleotide probe to generate a target-specific signature signal, can quantify subpicomolar levels of cancer-associated microRNAs and can distinguish single-nucleotide differences between microRNA family members. This approach is potentially useful for quantitative microRNA detection, the discovery of disease markers and non-invasive early diagnosis of cancer. A biological nanopore is used to detect circulating microRNA in the plasma of lung cancer patients, offering a non-invasive method to screen and diagnose diseases.
Enhancing intracellular accumulation and target engagement of PROTACs with reversible covalent chemistry
Current efforts in the proteolysis targeting chimera (PROTAC) field mostly focus on choosing an appropriate E3 ligase for the target protein, improving the binding affinities towards the target protein and the E3 ligase, and optimizing the PROTAC linker. However, due to the large molecular weights of PROTACs, their cellular uptake remains an issue. Through comparing how different warhead chemistry, reversible noncovalent (RNC), reversible covalent (RC), and irreversible covalent (IRC) binders, affects the degradation of Bruton’s Tyrosine Kinase (BTK), we serendipitously discover that cyano-acrylamide-based reversible covalent chemistry can significantly enhance the intracellular accumulation and target engagement of PROTACs and develop RC-1 as a reversible covalent BTK PROTAC with a high target occupancy as its corresponding kinase inhibitor and effectiveness as a dual functional inhibitor and degrader, a different mechanism-of-action for PROTACs. Importantly, this reversible covalent strategy is generalizable to improve other PROTACs, opening a path to enhance PROTAC efficacy. PROTACs have emerged as promising therapeutic agents but their cellular uptake is often inefficient. Here, the authors show that reversible covalent warhead chemistry improves PROTAC intracellular accumulation and target engagement, and develop a dual inhibitor/degrader of Bruton’s tyrosine kinase
Large-scale integration of single-cell transcriptomic data captures transitional progenitor states in mouse skeletal muscle regeneration
Skeletal muscle repair is driven by the coordinated self-renewal and fusion of myogenic stem and progenitor cells. Single-cell gene expression analyses of myogenesis have been hampered by the poor sampling of rare and transient cell states that are critical for muscle repair, and do not inform the spatial context that is important for myogenic differentiation. Here, we demonstrate how large-scale integration of single-cell and spatial transcriptomic data can overcome these limitations. We created a single-cell transcriptomic dataset of mouse skeletal muscle by integration, consensus annotation, and analysis of 23 newly collected scRNAseq datasets and 88 publicly available single-cell (scRNAseq) and single-nucleus (snRNAseq) RNA-sequencing datasets. The resulting dataset includes more than 365,000 cells and spans a wide range of ages, injury, and repair conditions. Together, these data enabled identification of the predominant cell types in skeletal muscle, and resolved cell subtypes, including endothelial subtypes distinguished by vessel-type of origin, fibro-adipogenic progenitors defined by functional roles, and many distinct immune populations. The representation of different experimental conditions and the depth of transcriptome coverage enabled robust profiling of sparsely expressed genes. We built a densely sampled transcriptomic model of myogenesis, from stem cell quiescence to myofiber maturation, and identified rare, transitional states of progenitor commitment and fusion that are poorly represented in individual datasets. We performed spatial RNA sequencing of mouse muscle at three time points after injury and used the integrated dataset as a reference to achieve a high-resolution, local deconvolution of cell subtypes. We also used the integrated dataset to explore ligand-receptor co-expression patterns and identify dynamic cell-cell interactions in muscle injury response. We provide a public web tool to enable interactive exploration and visualization of the data. Our work supports the utility of large-scale integration of single-cell transcriptomic data as a tool for biological discovery.David McKellar et al. integrate single-cell and -nuclear transcriptomic analyses of mouse skeletal muscle in homeostatic conditions or following injury. The resulting transcriptomic model of myogenesis identified rare, transitional states and cell subtypes that are poorly represented in individual datasets, providing a valuable resource for the field.
Epidemiology and Risk Factors of Dry Eye Disease: Considerations for Clinical Management
Dry eye disease is a multifactorial condition characterised by tear film instability, hyperosmolarity and ocular surface inflammation. Understanding the epidemiology of dry eye disease and recognising both modifiable and non-modifiable risk factors can assist eye care practitioners in assessing, treating, and managing patients with the condition. This review considers current knowledge surrounding its incidence and prevalence, as well as associated demographic, systemic, ocular, and iatrogenic, and lifestyle-related modifiable risk factors. Population-based prevalence estimates vary according to the diagnostic criteria used to define dry eye disease, as well as severity and demographic characteristics of the population. Considering recent data and variable population demographics, conservative prevalence estimates suggest that 10–20% of the population over 40 years of age report moderate to severe symptoms and/or seek treatment for dry eye disease. Individuals with specific non-modifiable demographic risk factors may be at increased risk of developing dry eye disease. Advanced age, female sex and East Asian ethnicity have been identified as key non-modifiable demographic features predisposing individuals to dry eye disease. Systemic conditions that have been associated with an increased risk of dry eye disease include migraine, Sjögren syndrome, connective tissue disorders, mental health disorders, diabetes mellitus and androgen deficiency. Medications that may contribute to this risk include antidepressants, antihistamines, and hormone replacement therapy. Ocular and iatrogenic risk factors of dry eye disease include blepharitis, Demodex infestation, ocular surgery, blink completeness, contact lens wear, and topical ophthalmic medications. A range of modifiable lifestyle factors that can increase the risk of dry eye disease have also been identified, including low humidity environments, digital screen use, quality of sleep, diet, and eye cosmetic wear. Dry eye is a common disease affecting millions globally. Increasing knowledge regarding its associated risk factors can better prepare the eye care practitioner to successfully manage patients with this ocular surface disease.
Simultaneous multiplexed amplicon sequencing and transcriptome profiling in single cells
DART-seq alters droplet sequencing in a simple and flexible way to simultaneously profile the transcriptome and multiplexed targeted RNAs, such as viral transcripts and immunoglobulin chains, in single cells.
Designing highly multiplex PCR primer sets with Simulated Annealing Design using Dimer Likelihood Estimation (SADDLE)
One major challenge in the design of highly multiplexed PCR primer sets is the large number of potential primer dimer species that grows quadratically with the number of primers to be designed. Simultaneously, there are exponentially many choices for multiplex primer sequence selection, resulting in systematic evaluation approaches being computationally intractable. Here, we present and experimentally validate Simulated Annealing Design using Dimer Likelihood Estimation (SADDLE), a stochastic algorithm for design of multiplex PCR primer sets that minimize primer dimer formation. In a 96-plex PCR primer set (192 primers), the fraction of primer dimers decreases from 90.7% in a naively designed primer set to 4.9% in our optimized primer set. Even when scaling to 384-plex (768 primers), the optimized primer set maintains low dimer fraction. In addition to NGS, SADDLE-designed primer sets can also be used in qPCR settings to allow highly multiplexed detection of gene fusions in cDNA, with a single-tube assay comprising 60 primers detecting 56 distinct gene fusions recurrently observed in lung cancer. The design of highly multiplex PCR primers to amplify and enrich many different DNA sequences is increasing in biomedical importance as new mutations and pathogens are identified. The authors present and experimentally validate Simulated Annealing Design using Dimer Likelihood Estimation (SADDLE), a stochastic algorithm for design of highly multiplex PCR primer sets that minimize primer dimer formation.