Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
1,102
result(s) for
"Wang, Xuewen"
Sort by:
GMATA: An Integrated Software Package for Genome-Scale SSR Mining, Marker Development and Viewing
2016
Simple sequence repeats (SSRs), also referred to as microsatellites, are highly variable tandem DNAs that are widely used as genetic markers. The increasing availability of whole-genome and transcript sequences provides information resources for SSR marker development. However, efficient software is required to efficiently identify and display SSR information along with other gene features at a genome scale. We developed novel software package Genome-wide Microsatellite Analyzing Tool Package (GMATA) integrating SSR mining, statistical analysis and plotting, marker design, polymorphism screening and marker transferability, and enabled simultaneously display SSR markers with other genome features. GMATA applies novel strategies for SSR analysis and primer design in large genomes, which allows GMATA to perform faster calculation and provides more accurate results than existing tools. Our package is also capable of processing DNA sequences of any size on a standard computer. GMATA is user friendly, only requires mouse clicks or types inputs on the command line, and is executable in multiple computing platforms. We demonstrated the application of GMATA in plants genomes and reveal a novel distribution pattern of SSRs in 15 grass genomes. The most abundant motifs are dimer GA/TC, the A/T monomer and the GCG/CGC trimer, rather than the rich G/C content in DNA sequence. We also revealed that SSR count is a linear to the chromosome length in fully assembled grass genomes. GMATA represents a powerful application tool that facilitates genomic sequence analyses. GAMTA is freely available at http://sourceforge.net/projects/gmata/?source=navbar.
Journal Article
Recent advances on optical vortex generation
2018
This article reviews recent progress leading to the generation of optical vortex beams. After introducing the basics of optical vortex beams and their promising applications, we summarized different approaches for optical vortex generation by discrete components and laser cavities. We place particular emphasis on the recent development of vortex generation by the planar phase plates, which are able to engineer a spiral phasefront via dynamic or geometric phase in nanoscale, and highlight the independent operation of these two different phases which leads to a multifunctional optical vortex beam generation and independent spin-orbit interaction. We also introduced the recent progress on vortex lasing, including vortex beam generation from the output of bulk lasers by modification of conventional laser cavities with phase elements and from integrated on-chip microlasers. Similar approaches are also applied to generate fractional vortex beams carrying fractional topological charge. The advanced technology and approaches on design and nanofabrications enable multiple vortex beams generation from a single device via multiplexing, multicasting, and vortex array, open up opportunities for applications on data processing, information encoding/decoding, communication and parallel data processing, and micromanipulations.
Journal Article
Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes
by
Zhou, Jiadong
,
Yu, Peng
,
You, Lu
in
639/301/1005/1008
,
639/766/119/996
,
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
2016
Two-dimensional (2D) materials have emerged as promising candidates for various optoelectronic applications based on their diverse electronic properties, ranging from insulating to superconducting. However, cooperative phenomena such as ferroelectricity in the 2D limit have not been well explored. Here, we report room-temperature ferroelectricity in 2D CuInP
2
S
6
(CIPS) with a transition temperature of ∼320 K. Switchable polarization is observed in thin CIPS of ∼4 nm. To demonstrate the potential of this 2D ferroelectric material, we prepare a van der Waals (vdW) ferroelectric diode formed by CIPS/Si heterostructure, which shows good memory behaviour with on/off ratio of ∼100. The addition of ferroelectricity to the 2D family opens up possibilities for numerous novel applications, including sensors, actuators, non-volatile memory devices, and various vdW heterostructures based on 2D ferroelectricity.
Two dimensional materials are promising for electronic applications, which await the exploration of cooperative phenomena. Here, Liu
et al.
report switchable ferroelectric polarization in thin CuInP
2
S
6
film at room temperature, demonstrating good memory behaviour with on/off ratio of ∼100 based on two-dimensional ferroelectricity.
Journal Article
Reconfiguring nucleation for CVD growth of twisted bilayer MoS2 with a wide range of twist angles
2024
Twisted bilayer (TB) transition metal dichalcogenides (TMDCs) beyond TB-graphene are considered an ideal platform for investigating condensed matter physics, due to the moiré superlattices-related peculiar band structures and distinct electronic properties. The growth of large-area and high-quality TB-TMDCs with wide twist angles would be significant for exploring twist angle-dependent physics and applications, but remains challenging to implement. Here, we propose a reconfiguring nucleation chemical vapor deposition (CVD) strategy for directly synthesizing TB-MoS
2
with twist angles from 0° to 120°. The twist angles-dependent Moiré periodicity can be clearly observed, and the interlayer coupling shows a strong relationship to the twist angles. Moreover, the yield of TB-MoS
2
in bilayer MoS
2
and density of TB-MoS
2
are significantly improved to 17.2% and 28.9 pieces/mm
2
by tailoring gas flow rate and molar ratio of NaCl to MoO
3
. The proposed reconfiguring nucleation approach opens an avenue for the precise growth of TB-TMDCs for both fundamental research and practical applications.
Twisted bilayers of 2D semiconductors are being intensively investigated due to their emergent physical properties, but their controlled bottom-up synthesis remains challenging. Here, the authors report a confined-space chemical vapour deposition strategy to synthesize MoS
2
bilayers with twist angles ranging from 0° to 120°.
Journal Article
Conservative production of galactosaminogalactan in Metarhizium is responsible for appressorium mucilage production and topical infection of insect hosts
2021
The exopolysaccharide galactosaminogalactan (GAG) has been well characterized in Aspergilli, especially the human pathogen Aspergillus fumigatus . It has been found that a five-gene cluster is responsible for GAG biosynthesis in Aspergilli to mediate fungal adherence, biofilm formation, immunosuppression or induction of host immune defences. Herein, we report the presence of the conserved GAG biosynthetic gene cluster in the insect pathogenic fungus Metarhizium robertsii to mediate either similar or unique biological functions. Deletion of the gene cluster disabled fungal ability to produce GAG on germ tubes, mycelia and appressoria. Relative to the wild type strain, null mutant was impaired in topical infection but not injection of insect hosts. We found that GAG production by Metarhizium is partially acetylated and could mediate fungal adherence to hydrophobic insect cuticles, biofilm formation, and penetration of insect cuticles. In particular, it was first confirmed that this exopolymer is responsible for the formation of appressorium mucilage, the essential extracellular matrix formed along with the infection structure differentiation to mediate cell attachment and expression of cuticle degrading enzymes. In contrast to its production during A . fumigatus invasive growth, GAG is not produced on the Metarhizium cells harvested from insect hemocoels; however, the polymer can glue germ tubes into aggregates to form mycelium pellets in liquid culture. The results of this study unravel the biosynthesis and unique function of GAG in a fungal system apart from the aspergilli species.
Journal Article
Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction
2020
Atom-thin transition metal dichalcogenides (TMDs) have emerged as fascinating materials and key structures for electrocatalysis. So far, their edges, dopant heteroatoms and defects have been intensively explored as active sites for the hydrogen evolution reaction (HER) to split water. However, grain boundaries (GBs), a key type of defects in TMDs, have been overlooked due to their low density and large structural variations. Here, we demonstrate the synthesis of wafer-size atom-thin TMD films with an ultra-high-density of GBs, up to ~10
12
cm
−2
. We propose a climb and drive 0D/2D interaction to explain the underlying growth mechanism. The electrocatalytic activity of the nanograin film is comprehensively examined by micro-electrochemical measurements, showing an excellent hydrogen-evolution performance (onset potential: −25 mV and Tafel slope: 54 mV dec
−1
), thus indicating an intrinsically high activation of the TMD GBs.
Transition metal dichalcogenides demonstrate fascinating capabilities for electrocatalytic H
2
evolution, although the activities vary widely depending on nanomaterial sites available. Here, authors show the grain boundaries of atomically thin MoS
2
to be especially active sites for H
2
evolution.
Journal Article
Heterologous AD5-nCOV plus CoronaVac versus homologous CoronaVac vaccination: a randomized phase 4 trial
by
Song, Zhizhou
,
Shi, Fengjuan
,
Cui, Lunbiao
in
631/250/2152/2153/1291
,
631/250/590/1883
,
692/308/2779/109/1943
2022
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and the waning of vaccine-elicited neutralizing antibodies suggests that additional coronavirus disease 2019 (COVID-19) vaccine doses may be needed for individuals who initially received CoronaVac. We evaluated the safety and immunogenicity of the recombinant adenovirus type 5 (AD5)-vectored COVID-19 vaccine Convidecia as a heterologous booster versus those of CoronaVac as homologous booster in adults previously vaccinated with CoronaVac in an ongoing, randomized, observer-blinded, parallel-controlled phase 4 trial (
NCT04892459
). Adults who had received two doses of CoronaVac in the past 3–6 months were vaccinated with Convidecia (
n
= 96) or CoronaVac (
n
= 102). Adults who had received one dose of CoronaVac in the past 1–3 months were also vaccinated with Convidecia (
n
= 51) or CoronaVac (
n
= 50). The co-primary endpoints were the occurrence of adverse reactions within 28 d after vaccination and geometric mean titers (GMTs) of neutralizing antibodies against live wild-type SARS-CoV-2 virus at 14 d after booster vaccination. Adverse reactions after vaccination were significantly more frequent in Convidecia recipients but were generally mild to moderate in all treatment groups. Heterologous boosting with Convidecia elicited significantly increased GMTs of neutralizing antibody against SARS-CoV-2 than homologous boosting with CoronaVac in participants who had previously received one or two doses of CoronaVac. These data suggest that heterologous boosting with Convidecia following initial vaccination with CoronaVac is safe and more immunogenic than homologous boosting.
Heterologous vaccination with Convidecia, a recombinant adenovirus type 5-vectored COVID-19 vaccine, after one or two doses of CoronaVac, an inactivated SARS-CoV-2 vaccine, is more reactogenic but elicits significantly higher levels of neutralizing antibodies than homologous vaccination.
Journal Article
High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition
by
Zhou, Jiadong
,
Yu, Peng
,
Suenaga, Kazu
in
639/638/298/924
,
639/925/357/1018
,
639/925/927/1064
2017
The discovery of monolayer superconductors bears consequences for both fundamental physics and device applications. Currently, the growth of superconducting monolayers can only occur under ultrahigh vacuum and on specific lattice-matched or dangling bond-free substrates, to minimize environment- and substrate-induced disorders/defects. Such severe growth requirements limit the exploration of novel two-dimensional superconductivity and related nanodevices. Here we demonstrate the experimental realization of superconductivity in a chemical vapour deposition grown monolayer material—NbSe
2
. Atomic-resolution scanning transmission electron microscope imaging reveals the atomic structure of the intrinsic point defects and grain boundaries in monolayer NbSe
2
, and confirms the low defect concentration in our high-quality film, which is the key to two-dimensional superconductivity. By using monolayer chemical vapour deposited graphene as a protective capping layer, thickness-dependent superconducting properties are observed in as-grown NbSe
2
with a transition temperature increasing from 1.0 K in monolayer to 4.56 K in 10-layer.
Two-dimensional superconductors will likely have applications not only in devices, but also in the study of fundamental physics. Here, Wang et al. demonstrate the CVD growth of superconducting NbSe2 on a variety of substrates, making these novel materials increasingly accessible.
Journal Article
Comparative transcriptomic analysis reveals gene expression associated with cold adaptation in the tea plant Camellia sinensis
by
Zhu, Xiangxiang
,
Jiang, Changjun
,
Bennetzen, Jeffrey L.
in
Acclimatization - genetics
,
Animal Genetics and Genomics
,
Assamica tea
2019
Background
Low temperature restricts the planting range of all crops, but cold acclimation induces adaption to cold stress in many plants.
Camellia sinensis
, a perennial evergreen tree that is the source of tea, is mainly grown in warm areas.
Camellia sinensis var. sinensis
(CSS) has greater cold tolerance than
Camellia sinensis var. assamica
(CSA). To gain deep insight into the molecular mechanisms underlying cold adaptation, we investigated the physiological responses and transcriptome profiles by RNA-Seq in two tea varieties, cold resistant SCZ (classified as CSS) and cold susceptible YH9 (classified as CSA), during cold acclimation.
Results
Under freezing stress, lower relative electrical conductivity and higher chlorophyll fluorescence (Fv/Fm) values were detected in SCZ than in YH9 when subjected to freezing acclimation. During cold treatment, 6072 and 7749 DEGs were observed for SCZ and YH9, respectively. A total of 978 DEGs were common for both SCZ and YH9 during the entire cold acclimation process. DEGs were enriched in pathways of photosynthesis, hormone signal transduction, and transcriptional regulation of plant-pathogen interactions. Further analyses indicated that decreased expression of
Lhca2
and higher expression of
SnRK2.8
are correlated with cold tolerance in SCZ.
Conclusions
Compared with CSA, CSS was significantly more resistant to freezing after cold acclimation, and this increased resistance was associated with an earlier expression of cold-induced genes. Because the greater transcriptional differentiation during cold acclimation in SCZ may contribute to its greater cold tolerance, our studies identify specific genes involved in photoinhibition, ABA signal conduction, and plant immunity that should be studied for understanding the processes involved in cold tolerance. Marker-assisted breeding focused on the allelic variation at these loci provides an avenue for the possible generation of CSA cultivars that have CSS-level cold tolerance.
Journal Article
A self-learning method with domain knowledge integration for intelligent welding sequence planning
2025
Due to the emergence of mass personalized production, intelligent welding systems must achieve high levels of productivity and flexibility. Therefore, a self-learning welding-task sequencing method that is driven by data and knowledge was developed during this study. First, a minimized dataset of welding sequences, which is required to predict the welding deformation, was designed according to the number and directions of the welds included in the welding tasks. The dataset consisted of a finite number of welding sequences and their corresponding welding deformation data. Then, an algorithm to predict the welding deformation was developed. To improve the interpretability of the results, domain knowledge was integrated into the construction and training processes of a self-learning model. Finally, a case study regarding bracket welding was investigated. With FEA as the benchmark, the maximum relative error of the welding deformation predicted by the algorithm designed to predict the welding deformation was 8%. The maximum deformation of the optimal welding-task sequence output by the self-learning welding-task sequencing method driven by data and knowledge was 32.31% less than that produced by the rule-based reasoning method. The study results demonstrate that the proposed welding-task sequencing method is effective for welding sequence planning of laser welding bracket structures.
Journal Article