Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
76
result(s) for
"Wang, Zhezhi"
Sort by:
Changes in physicochemical properties, enzymatic activities, and the microbial community of soil significantly influence the continuous cropping of Panax quinquefolius L. (American ginseng)
by
Liu, Shuai
,
Niu, Junfeng
,
Dang, Kaikai
in
Agricultural land
,
Alkaline phosphatase
,
Alkaline soils
2021
Aims
In the production of the natural medicinal plant American ginseng, replantation typically fails due to continuous cropping obstacles. However, the cause is still not clear and needs more research.
Methods
Soil samples were collected from (a) maize fields where American ginseng had never been planted, (b) fields where American ginseng had just been harvested, and (c) fields where maize had been planted for 2, 4 and 6 years respectively after American ginseng. We investigated the physicochemical properties, the enzymatic activities, and the soil microbial community structure and composition of the samples.
Results
We found that the content of soil salt, NH
4
+
-N, and NO
3
−
-N increased significantly in samples associated with the production of American ginseng, whereas the soil pH, carbon-to-nitrogen ratio, alkaline phosphatase, and cellulase activity all significantly decreased and gradually recovered to the pre-planting level. Moreover, the bacterial diversity decreased, while fungal diversity and richness increased; fungal richness continued to increase in farmlands replanted maize. The relative abundance of some microbial communities was changed significantly and was gradually restored with a longer time to replant maize. Pearson’s correlation analysis shown that significantly changed microbial communities were significantly associated with changes in soil pH, soil salt and nitrogen content, alkaline phosphatase, and cellulase activity.
Conclusions
Changes in soil pH, soil salt and nitrogen content caused changes in microbial community structure and composition, as well as cellulase and alkaline phosphatase activity. These changes may cause the continuous cropping obstacles of American ginseng and may be improved by planting maize.
Journal Article
The complete chloroplast genome sequence of Epipremnum aureum and its comparative analysis among eight Araceae species
2018
Epipremnum aureum is an important foliage plant in the Araceae family. In this study, we have sequenced the complete chloroplast genome of E. aureum by using Illumina Hiseq sequencing platforms. This genome is a double-stranded circular DNA sequence of 164,831 bp that contains 35.8% GC. The two inverted repeats (IRa and IRb; 26,606 bp) are spaced by a small single-copy region (22,868 bp) and a large single-copy region (88,751 bp). The chloroplast genome has 131 (113 unique) functional genes, including 86 (79 unique) protein-coding genes, 37 (30 unique) tRNA genes, and eight (four unique) rRNA genes. Tandem repeats comprise the majority of the 43 long repetitive sequences. In addition, 111 simple sequence repeats are present, with mononucleotides being the most common type and di- and tetranucleotides being infrequent events. Positive selection pressure on rps12 in the E. aureum chloroplast has been demonstrated via synonymous and nonsynonymous substitution rates and selection pressure sites analyses. Ycf15 and infA are pseudogenes in this species. We constructed a Maximum Likelihood phylogenetic tree based on the complete chloroplast genomes of 38 species from 13 families. Those results strongly indicated that E. aureum is positioned as the sister of Colocasia esculenta within the Araceae family. This work may provide information for further study of the molecular phylogenetic relationships within Araceae, as well as molecular markers and breeding novel varieties by chloroplast genetic-transformation of E. aureum in particular.
Journal Article
RNAi-mediated suppression of the phenylalanine ammonia-lyase gene in Salvia miltiorrhiza causes abnormal phenotypes and a reduction in rosmarinic acid biosynthesis
2011
Medicinal Salvia miltiorrhiza contains two main groups of active pharmaceutical ingredients: lipid-soluble tanshinones and water-soluble phenolic acids, including rosmarinic acid and salvianolic acid B. Phenylalanine ammonia-lyase (PAL) catalyzes the first step in the phenylpropanoid pathway and is assumed to be closely related to the accumulation of rosmarinic acid and its derivatives. We selected a 217-bp fragment, located at the 3′ end of the coding region of PAL1, to establish an RNA interference construct that was introduced into S. miltiorrhiza via Agrobacterium tumefaciens-mediated transformation. PAL-suppressed plants exhibited several unusual phenotypes such as stunted growth, delayed root formation, altered leaves, and reduced lignin deposition. The total phenolic content was decreased by 20-70% in PAL-suppressed lines, and was accompanied by lower PAL activity. Down-regulation of PAL also affected the expression of C4H, 4CL2, and TAT, which are related genes in the rosmarinic acid pathway. Moreover, rosmarinic acid and salvianolic acid B were markedly reduced in PAL-suppressed lines, as detected by HPLC analysis. Our results indicate that PAL is very important for the synthesis of major water-soluble pharmaceutical ingredients within S. miltiorrhiza.
Journal Article
Resequencing and Functional Analysis Revealed That BsDFR4 Could Cause the Formation of Different Flower Colors in Bletilla striata (Orchidaceae)
by
Zheng, Siting
,
Jiang, Xiulin
,
Liu, Shuai
in
Alcohol Oxidoreductases - genetics
,
Alcohol Oxidoreductases - metabolism
,
Analysis
2025
The formation of flower color is closely related to anthocyanin synthesis. In this study, flowers of Bletilla striata (Orchidaceae) exhibiting distinct color morphs were collected and analyzed. The HPLC results showed significantly higher total flavonoid and anthocyanin contents in purple flowers compared to pink counterparts, with increases of 2.20-fold (p < 0.01) and 15.22-fold (p < 0.01), respectively. Cyanidin was the predominant anthocyanin in B. striata. Resequencing analyses highlighted SNP as the primary variation associated with color divergence. A comprehensive screen identified 61 genes encoding enzymes critical to the flavonoid and anthocyanin biosynthesis pathways in B. striata. Among these, 16 flower-specific genes exhibited high expression levels and harbored SNP variations. Notably, a premature stop codon was identified in a gene encoding dihydroflavonol 4-reductase (DFR), leading to truncated protein synthesis and potential disruption of anthocyanin production. Further, the heterologous overexpression of BsDFR4 in Phalaenopsis aphrodite changed petal color from white to yellow-green, demonstrating that it indeed played a regulatory role in the formation of flower color. Furthermore, yeast one-hybrid assays confirmed that transcription factors BsMYB36 and BsMYB51 could directly bind to the BsDFR4 promoter, suggesting their synergistic regulation of anthocyanin biosynthesis. These results provided a conceptual basis for insights into the formation of different flower colors in Orchidaceae.
Journal Article
Overexpression of SmMYC2 Increases the Production of Phenolic Acids in Salvia miltiorrhiza
2017
MYC2 is a core transcription factor in the plant response to jasmonates. It also functions in secondary metabolism and various processes for growth and development. However, the knowledge about its role in
is still very limited. We determined that the biosynthesis of salvianolic acid B (Sal B) was strongly induced in 2-month-old transgenic plants that over-expressed
. In the roots of transgenic line 12 that over-expressed
(OEM-12), the Sal B concentration was as high as 5.95 ± 0.07 mg g
, a level that was 1.88-fold higher than that in control plants that had been transformed with an empty vector. Neither tanshinone IIA nor cryptotanshinone was detected by high-performance liquid chromatography in any of the genotypes. Global transcriptomic analysis using RNA sequencing revealed that most enzyme-encoding genes for the phenylpropanoid biosynthesis pathway were up-regulated in the overexpression lines. Furthermore, both the phenylalanine and tyrosine biosynthesis pathways were activated in those transgenics. Our data demonstrate that overexpression of
promotes the production of phenolic acids by simultaneously activating both primary and secondary pathways for metabolism in
.
Journal Article
De Novo Assembly and Analysis of Polygonatum sibiricum Transcriptome and Identification of Genes Involved in Polysaccharide Biosynthesis
by
Qiang, Yi
,
Niu, Junfeng
,
Dang, Kaikai
in
Base Sequence
,
beta-Fructofuranosidase - genetics
,
beta-Fructofuranosidase - metabolism
2017
Polygonatum sibiricum polysaccharides (PSPs) are used to improve immunity, alleviate dryness, promote the secretion of fluids, and quench thirst. However, the PSP biosynthetic pathway is largely unknown. Understanding the genetic background will help delineate that pathway at the molecular level so that researchers can develop better conservation strategies. After comparing the PSP contents among several different P. sibiricum germplasms, we selected two groups with the largest contrasts in contents and subjected them to HiSeq2500 transcriptome sequencing to identify the candidate genes involved in PSP biosynthesis. In all, 20 kinds of enzyme-encoding genes were related to PSP biosynthesis. The polysaccharide content was positively correlated with the expression patterns of β-fructofuranosidase (sacA), fructokinase (scrK), UDP-glucose 4-epimerase (GALE), Mannose-1-phosphate guanylyltransferase (GMPP), and UDP-glucose 6-dehydrogenase (UGDH), but negatively correlated with the expression of Hexokinase (HK). Through qRT-PCR validation and comprehensive analysis, we determined that sacA, HK, and GMPP are key genes for enzymes within the PSP metabolic pathway in P. sibiricum. Our results provide a public transcriptome dataset for this species and an outline of pathways for the production of polysaccharides in medicinal plants. They also present more information about the PSP biosynthesis pathway at the molecular level in P. sibiricum and lay the foundation for subsequent research of gene functions.
Journal Article
Genome survey sequencing and genetic diversity of cultivated Akebia trifoliata assessed via phenotypes and SSR markers
2021
Akebia trifoliata (Lardizabalaceae) is an important medicinal plant with multiple pharmacological effects. However, the lack of genomic information had limited the further excavation and utilization of this plant. An initial survey of the genome A. trifoliata was performed by next-generation sequencing, and then the genome size was inferred by flow cytometry. The whole genome survey of A. trifoliata generated 61.90 Gb of sequence data with approximately 95.51 × coverage. The genome size, heterozygosity and GC content obtained by k-mer analysis were almost 648.07 Mb, 0.72% and 36.11%, respectively. The genome size calculated by flow cytometry was 685.77 Mb, which was consistent with the results of genome survey. A total of 851,957 simple sequence repeats (SSR) were identified in the A. trifoliata genome. Twenty-eight phenotypic traits and thirty pairs of SSR primers were selected for the analysis of the genetic diversity of 43 accessions of cultivated A. trifoliata. The results showed that 216 bands were generated by 30 pairs of SSR primers, of which 189 (87.5%) were polymorphic. In addition, the phenotypes and SSR markers were used for cluster analysis of 43 cultivated accessions. The results of the two clustering methods were partially consistent. The genome survey of A. trifoliata demonstrated that the genome size of this plant was about 648.07 Mb. In the present study, the size and characteristics of the genome of A. trifoliata were reported for the first time, which greatly enriched the genomic resources of A. trifoliata for the further research and utilization.
Journal Article
Comprehensive functional analysis of the PYL-PP2C-SnRK2s family in Bletilla striata reveals that BsPP2C22 and BsPP2C38 interact with BsPYLs and BsSnRK2s in response to multiple abiotic stresses
by
Liu, Shuai
,
Niu, Junfeng
,
Lu, Chan
in
ABA signaling pathway
,
Abiotic stress
,
abiotic stresses
2022
As the core regulation network for the abscisic acid (ABA) signaling pathway, the PYL-PP2C-SnRK2s family commonly exists in many species. For this study, a total of 9 BsPYLs, 66 BsPP2Cs, and 7 BsSnRK2s genes were identified based on the genomic databases of Bletilla striata , which were classified into 3, 10, and 3 subgroups, respectively. Basic bioinformatics analysis completed, including the physicochemical properties of proteins, gene structures, protein motifs and conserved domains. Multiple cis -acting elements related to stress responses and plant growth were found in promoter regions. Further, 73 genes were localized on 16 pseudochromosomes and 29 pairs of paralogous genes were found via intraspecific collinearity analysis. Furthermore, tissue-specific expression was found in different tissues and germination stages. There were two BsPYLs , 10 BsPP2Cs , and four BsSnRK2 genes that exhibited a difference in response to multiple abiotic stresses. Moreover, subcellular localization analysis revealed six important proteins BsPP2C22, BsPP2C38, BsPP2C64, BsPYL2, BsPYL8, and BsSnRK2.4 which were localized in the nucleus and plasma membrane. Finally, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays suggested that BsPP2C22 and BsPP2C38 could interact with multiple BsPYLs and BsSnRK2s proteins. This study systematically reported on the identification and characterization of the PYL-PP2C-SnRK2s family in B. striata , which provided a conceptual basis for deep insights into the functionality of ABA core signal pathways in Orchidaceae.
Journal Article
Total Flavonoids of Drynariae Rhizoma Prevent Bone Loss Induced by Hindlimb Unloading in Rats
2017
Drynariae Rhizoma is a kidney-tonifying herb that has a long history in clinical practice for the treatment of bone fractures and joint diseases in China. Flavonoids are considered to be its major active ingredients and are reported to ease bone loss in ovariectomized rats. However, the beneficial effects of the total flavonoids of Drynariae Rhizoma on osteoporosis caused by microgravity or mechanical inactivity remain unknown. This study assessed the effects of total Drynariae Rhizoma flavonoids (DRTF, Qihuang, Beijing, China, national medicine permit No. Z20030007, number of production: 04080081, content of DRTF ≥80%) against bone loss induced by simulated microgravity. A hindlimb unloading tail-suspended rat model was established to determine the effect of DRTF on bone mineral density (BMD), biomechanical strength and trabecular bone microarchitecture. Twenty-eight male Sprague–Dawley rats were divided into four groups: the baseline, control, hindlimb unloading with vehicle (HLU), and hindlimb unloading treated with DRTF (HLU–DRTF, 75 mg/kg/day) groups. Oral DRTF was administered for 4 weeks. The underlying mechanisms of the DRTF actions on disuse-induced osteoporosis are discussed. The results showed that DRTF treatment significantly increased the BMD and mechanical strength of tail-suspended rats. Enhanced bone turnover markers with HLU treatment were attenuated by DRTF administration. Deterioration of trabecular bone induced by HLU was prevented through elevated bone volume/tissue volume (BV/TV), trabecular number (Tb. N), trabecular thickness (Tb. Th) and decreased trabecular separation (Tb. Sp). The present study provides the first evidence that DRTF prevents bone loss induced by HLU treatment, indicating its potential application in the treatment of disuse-induced osteoporosis.
Journal Article
Genome-Wide Identification of the TIFY Family in Salvia miltiorrhiza Reveals That SmJAZ3 Interacts With SmWD40-170, a Relevant Protein That Modulates Secondary Metabolism and Development
2021
Salvia miltiorrhiza Bunge ( S. miltiorrhiza ), a traditional Chinese medicinal herb, contains numerous bioactive components with broad range of pharmacological properties. By increasing the levels of endogenous jasmonate (JA) in plants or treating them with methyl jasmonate (MeJA), the level of tanshinones and salvianolic acids can be greatly enhanced. The jasmonate ZIM (JAZ) proteins belong to the TIFY family, and act as repressors, releasing targeted transcriptional factors in the JA signaling pathway. Herein, we identified and characterized 15 TIFY proteins present in S. miltiorrhiza . Quantitative reverse transcription PCR analysis indicated that the JAZ genes were all constitutively expressed in different tissues and were induced by MeJA treatments. SmJAZ3, which negatively regulates the tanshinones biosynthesis pathway in S. miltiorrhiza and the detailed molecular mechanism is poorly understood. SmJAZ3 acts as a bait protein to capture and identify a WD-repeat containing the protein SmWD40-170. Further molecular and genetic analysis revealed that SmWD40-170 is a positive regulator, promoting the accumulation of secondary metabolites in S. miltiorrhiza . Our study systematically analyzed the TIFY family and speculated a module of the JAZ-WD40 complex provides new insights into the mechanisms regulating the biosynthesis of secondary metabolites in S. miltiorrhiza .
Journal Article