Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
1,645
result(s) for
"Watt, Michael S."
Sort by:
Unsupervised Methodology for Large-Scale Tree Seedling Mapping in Diverse Forestry Settings Using UAV-Based RGB Imagery
by
Watt, Michael S.
,
Jayathunga, Sadeepa
,
Pearse, Grant D.
in
Accuracy
,
Aerial photogrammetry
,
Algorithms
2023
Mapping and monitoring tree seedlings is essential for reforestation and restoration efforts. However, achieving this on a large scale, especially during the initial stages of growth, when seedlings are small and lack distinct morphological features, can be challenging. An accurate, reliable, and efficient method that detects seedlings using unmanned aerial vehicles (UAVs) could significantly reduce survey costs. In this study, we used an unsupervised approach to map young conifer seedlings utilising spatial, spectral, and structural information from UAV digital aerial photogrammetric (UAV-DAP) point clouds. We tested our method across eight trial stands of radiata pine with a wide height range (0.4–6 m) that comprised a total of ca. 100 ha and spanned diverse site conditions. Using this method, seedling detection was excellent, with an overall precision, sensitivity, and F1 score of 95.2%, 98.0%, and 96.6%, respectively. Our findings demonstrated the importance of combining spatial, spectral, and structural metrics for seedling detection. While spectral and structural metrics efficiently filtered out non-vegetation objects and weeds, they struggled to differentiate planted seedlings from regenerating ones due to their similar characteristics, resulting in a large number of false positives. The inclusion of a row segment detection algorithm overcame this limitation and successfully identified most regenerating seedlings, leading to a significant reduction in false positives and an improvement in overall detection accuracy. Our method generated vector files containing seedling positions and key structural characteristics (seedling height, crown dimensions), offering valuable outputs for precision management. This automated pipeline requires fewer resources and user inputs compared to manual annotations or supervised techniques, making it a rapid, cost-effective, and scalable solution which is applicable without extensive training data. While serving as primarily a standalone tool for assessing forestry projects, the proposed method can also complement supervised seedling detection methods like machine learning, i.e., by supplementing training datasets.
Journal Article
Early Detection of Invasive Exotic Trees Using UAV and Manned Aircraft Multispectral and LiDAR Data
by
Morgenroth, Justin
,
Pearse, Grant D.
,
Watt, Michael S.
in
Airborne lasers
,
Aircraft
,
Aircraft detection
2019
Exotic conifers can provide significant ecosystem services, but in some environments, they have become invasive and threaten indigenous ecosystems. In New Zealand, this phenomenon is of considerable concern as the area occupied by invasive exotic trees is large and increasing rapidly. Remote sensing methods offer a potential means of identifying and monitoring land infested by these trees, enabling managers to efficiently allocate resources for their control. In this study, we sought to develop methods for remote detection of exotic invasive trees, namely Pinus sylvestris and P. ponderosa. Critically, the study aimed to detect these species prior to the onset of maturity and coning as this is important for preventing further spread. In the study environment in New Zealand’s South Island, these species reach maturity and begin bearing cones at a young age. As such, detection of these smaller individuals requires specialist methods and very high-resolution remote sensing data. We examined the efficacy of classifiers developed using two machine learning algorithms with multispectral and laser scanning data collected from two platforms—manned aircraft and unmanned aerial vehicles (UAV). The study focused on a localized conifer invasion originating from a multi-species pine shelter belt in a grassland environment. This environment provided a useful means of defining the detection thresholds of the methods and technologies employed. An extensive field dataset including over 17,000 trees (height range = 1 cm to 476 cm) was used as an independent validation dataset for the detection methods developed. We found that data from both platforms and using both logistic regression and random forests for classification provided highly accurate (kappa < 0.996 ) detection of invasive conifers. Our analysis showed that the data from both UAV and manned aircraft was useful for detecting trees down to 1 m in height and therefore shorter than 99.3% of the coning individuals in the study dataset. We also explored the relative contribution of both multispectral and airborne laser scanning (ALS) data in the detection of invasive trees through fitting classification models with different combinations of predictors and found that the most useful models included data from both sensors. However, the combination of ALS and multispectral data did not significantly improve classification accuracy. We believe that this was due to the simplistic vegetation and terrain structure in the study site that resulted in uncomplicated separability of invasive conifers from other vegetation. This study provides valuable new knowledge of the efficacy of detecting invasive conifers prior to the onset of coning using high-resolution data from UAV and manned aircraft. This will be an important tool in managing the spread of these important invasive plants.
Journal Article
Probing Early and Long-Term Drought Responses in Kauri Using Canopy Hyperspectral Imaging
2025
What are the main findings? A combination of structural and pigment-related narrow band hyperspectral indices (NBHIs), analysed across multiple time points, enabled earlier detection of water stress in kauri seedlings compared to conventional physiological measures. Pigment-related indices robustly predicted variation in equivalent water thickness (EWT), accounting for up to 87% of observed variance in field-based juvenile kauri trees. What are the implications of the main findings? Demonstrated the consistency and efficacy of canopy hyperspectral imaging to characterise water stress in kauri. Offers scalable pathways for broader forest health monitoring of indigenous species such as kauri and drought-sensitive forest species. Global increases in drought frequency and severity pose growing risks to forest resilience, particularly for long-lived endemic tree species such as kauri (Agathis australis). Building on prior leaf-level work, this study assessed the utility of multitemporal canopy-scale hyperspectral imaging to characterise water stress in both controlled nursery and field conditions. Two complementary experiments were undertaken: (i) a 10-week controlled-environment experiment comparing drought and control groups, and (ii) a field-based assessment of juvenile kauri trees across multiple time points with contrasting soil volumetric water content. In the controlled-environment experiment, drought-treated seedlings exhibited delayed physiological responses, with reductions in stomatal conductance and assimilation emerging only after three weeks. In contrast, time-series analysis of narrow band hyperspectral indices (NBHIs) revealed detectable stress signatures within one week after drought initiation, with early sensitivity driven by structural and pigment-related indices. As stress progressed, pigment-specific indices became the dominant predictors. These findings were consistent with the field-based experiment. Variation in leaf equivalent water thickness (EWT) was strongly explained by pigment-sensitive indices, including Pigment Specific Simple Ratio Carotenoid (PSSRc) and Carotenoid Reflectance indices (CRI700 and CRI550), which together accounted for ca. 87% of the variance. Structural indices such as the Normalised Difference Vegetation Index (NDVI) also ranked among the top 20 predictors, but had comparatively lower explanatory power (<75%). Overall, the two experiments show that canopy-based hyperspectral imaging provides early, sensitive, and consistent detection of water stress in kauri. The findings highlight a scalable approach for monitoring drought impacts on kauri and offer a foundation for developing operational forest health tools under increasing climate pressure.
Journal Article
Early Detection of Water Stress in Kauri Seedlings Using Multitemporal Hyperspectral Indices and Inverted Plant Traits
by
Main, Russell
,
Watt, Michael S.
,
Arpanaei, Mohammad-Mahdi
in
Aquatic resources
,
Biodiversity
,
Carbon dioxide
2025
Global climate variability is projected to result in more frequent and severe droughts, which can have adverse effects on New Zealand’s endemic tree species such as the iconic kauri (Agathis australis). Several studies have investigated the physiological response of kauri to medium- and long-term water stress; however, no research has used hyperspectral technology for the early detection and characterization of water stress in this species. In this study, physiological (stomatal conductance (gs), assimilation rate (A), equivalent water thickness (EWT)) and leaf-level hyperspectral measurements were recorded over a ten-week period on 100 potted kauri seedlings subjected to control (well-watered) and drought treatments. In addition, plant functional traits (PTs) were retrieved from spectral reflectance data via inversion of the PROSPECT-D radiative transfer model. These data were used to (i) identify key PTs and narrow-band hyperspectral indices (NBHIs) associated with the expression of water stress and (ii) develop classification models based on single-date and multitemporal datasets for the early detection of water stress. A significant decline in soil water content and physiological responses (gs and A) occurred among the trees in the drought treatment in weeks 2 and 4, respectively. Although no significant treatment differences (p > 0.05) were observed in EWT across the whole duration of the experiment, lower mean values in the drought treatment were apparent from week 4 onwards. In contrast, several spectral bands and NBHIs exhibited significant differences the week after water was withheld. The number and category of significant NBHIs varied up to week 4, after which a substantial increase in the number of significant indices was observed until week 10. However, despite this increase, the single-date models did not show good model performance (F1 score > 0.70) until weeks 9 and 10. In contrast, when multitemporal datasets were used, the classification performance ranged from good to outstanding from weeks 2 to 10. This improvement was largely due to the enhanced temporal and feature representation in the multitemporal models. Among the input NBHIs, water indices emerged as the most important predictors, followed by photochemical indices. Furthermore, a comparison of inverted and measured EWT showed good correspondence (mean absolute percentage error (MAPE) = 8.49%, root mean squared error (RMSE) = 0.0026 g/cm2), highlighting the potential use of radiative transfer modelling for high-throughput drought monitoring. Future research is recommended to scale these measurements to the canopy level, which could prove valuable in detecting and characterizing drought stress at a larger scale.
Journal Article
Leveraging UAV spectral and thermal traits for the genetic improvement of resistance to Dothistroma needle blight in Pinus radiata D.Don
2025
Phenotyping is critical in tree breeding, but traditional methods are often labour-intensive and not easily scalable. Resistance to biotic and abiotic stress is a key focus in tree breeding programmes. While heritable traits derived from spectral remote sensing have been identified in trees, their application to tree phenotyping remains unexplored. This study investigates
high-throughput hyperspectral and thermal imaging for assessing Dothistroma needle blight (DNB) resistance in
D.Don.
Using UAV-based hyperspectral and thermal imaging during a severe DNB outbreak in a clonal trial in New Zealand, we computed narrow-band hyperspectral indices (NBHIs), canopy temperature indices, radiative transfer inverted plant traits, and solar-induced fluorescence. Visual severity scores and remote sensing indices were modelled using spatially explicit mixed-effect linear models integrating pedigree and genomic data in a single-step genomic evaluation. Multi-trait models and sampling simulations were used to evaluate the potential of remote sensing indices to supplement or replace traditional phenotyping.
Remote sensing indices exhibited narrow-sense heritability values comparable to severity scores (up to 0.37) and high absolute correlation coefficients with severity scores (up to 0.79). Carotenoid and chlorophyll-related NBHIs were the most informative, reflecting physiological impacts of DNB. Combining partial visual scoring with NBHIs maintained high estimated breeding value (EBV) accuracy (0.68) at 50% scoring and moderate accuracy (0.59) at 20% scoring. EBV correlation with full scoring was above 0.8 even at 20% scoring. Using solely the most heritable NBHI achieved 0.71 breeding value accuracy and 0.79 absolute EBV correlation with severity scores, suggesting NBHIs can replace visual scoring with minimal precision loss.
By utilising UAV-based hyperspectral and thermal imaging to capture single-tree phenotypes related to disease in a forestry trial and pairing the data to genomic evaluation, this study establishes that remote sensing data offers an efficient, scalable alternative to traditional phenotyping. Our approach constitutes a major step towards characterising specific physiological responses, facilitating the discovery of the genetic architecture of physiological traits, and significantly enhancing genetic improvement.
Journal Article
An Assessment of High-Density UAV Point Clouds for the Measurement of Young Forestry Trials
2020
The measurement of forestry trials is a costly and time-consuming process. Over the past few years, unmanned aerial vehicles (UAVs) have provided some significant developments that could improve cost and time efficiencies. However, little research has examined the accuracies of these technologies for measuring young trees. This study compared the data captured by a UAV laser scanning system (ULS), and UAV structure from motion photogrammetry (SfM), with traditional field-measured heights in a series of forestry trials in the central North Island of New Zealand. Data were captured from UAVs, and then processed into point clouds, from which heights were derived and compared to field measurements. The results show that predictions from both ULS and SfM were very strongly correlated to tree heights (R2 = 0.99, RMSE = 5.91%, and R2 = 0.94, RMSE = 18.5%, respectively) but that the height underprediction was markedly lower for ULS than SfM (Mean Bias Error = 0.05 vs. 0.38 m). Integration of a ULS DTM to the SfM made a minor improvement in precision (R2 = 0.95, RMSE = 16.5%). Through plotting error against tree height, we identified a minimum threshold of 1 m, under which the accuracy of height measurements using ULS and SfM significantly declines. Our results show that SfM and ULS data collected from UAV remote sensing can be used to accurately measure height in young forestry trials. It is hoped that this study will give foresters and tree breeders the confidence to start to operationalise this technology for monitoring trials.
Journal Article
Mapping Windthrow Risk in Pinus radiata Plantations Using Multi-Temporal LiDAR and Machine Learning: A Case Study of Cyclone Gabrielle, New Zealand
by
Camarretta, Nicolò
,
Jayathunga, Sadeepa
,
Suárez, Juan C.
in
Accuracy
,
airborne laser scanning
,
Case studies
2025
As the frequency of strong storms and cyclones increases, understanding wind risk in both existing and newly established plantation forests is becoming increasingly important. Recent advances in the quality and availability of remotely sensed data have significantly improved our capability to make large-scale wind risk predictions. This study models the loss of radiata pine (Pinus radiata D.Don) plantations following a severe cyclone within the Gisborne Region of New Zealand through leveraging repeat regional LiDAR acquisitions, optical imagery, and various surfaces describing key climatic, topographic, and storm-specific conditions. A random forest model was trained on 9713 plots classified as windthrow or no-windthrow. Model validation using 50 iterations of 80/20 train/test splits achieved robust accuracy (accuracy = 0.835; F1 score = 0.841; AUC = 0.913). In comparison to most European empirical models (AUC = 0.51–0.90), our framework demonstrated superior discrimination, underscoring its value for regions prone to cyclones. Among the 14 predictor variables, the most influential were mean windspeed during February, the wind exposition index, site drainage, and stand age. Model predictions closely aligned with the estimated 3705 hectares of cyclone-induced forest damage and indicated that 20.9% of unplanted areas in the region would be at risk of windthrow at age 30 if established in radiata pine. The resulting wind risk surface serves as a valuable decision-support tool for forest managers, helping to mitigate wind risk in existing forests and guide adaptive afforestation strategies. Although developed for radiata pine plantations in New Zealand, the approach and findings have broader relevance for forest management in cyclone-prone regions worldwide, particularly where plantation forestry is widely practised.
Journal Article
Monitoring Wildfire Risk with a Near-Real-Time Live Fuel Moisture Content System: A Review and Roadmap for Operational Application in New Zealand
by
Pearce, H. Grant
,
Shuman, Jacquelyn K.
,
Watt, Michael S.
in
Climate change
,
Climatic changes
,
Decision making
2025
Live fuel moisture content (LFMC) is a critical variable influencing wildfire behavior, ignition potential, and suppression difficulty, yet it remains challenging to monitor consistently across landscapes due to sparse field observations, rapid temporal changes, and vegetation heterogeneity. This study presents a comprehensive review of satellite-based approaches for estimating LFMC, with emphasis on methods applicable to New Zealand, where wildfire risk is increasing due to climate change. We assess the suitability of different remote sensing data sources, including multispectral, thermal, and microwave sensors, and evaluate their integration for characterizing both LFMC and fuel types. Particular attention is given to the trade-offs between data resolution, revisit frequency, and spectral sensitivity. As knowledge of fuel type and structure is critical for understanding wildfire behavior and LFMC, the review also outlines key limitations in existing land cover products for fuel classification and highlights opportunities for improving fuel mapping using remotely sensed data. This review lays the groundwork for the development of an operational LFMC prediction system in New Zealand, with broader relevance to fire-prone regions globally. Such a system would support real-time wildfire risk assessment and enhance decision-making in fire management and emergency response.
Journal Article
Preprocessing Ground-Based Visible/Near Infrared Imaging Spectroscopy Data Affected by Smile Effects
by
Buddenbaum, Henning
,
Hill, Joachim
,
Scholten, Rebecca C.
in
Communication
,
field imaging spectroscopy
,
forestry
2019
A data set of very high-resolution visible/near infrared hyperspectral images of young Pinus contorta trees was recorded to study the effects of herbicides on this invasive species. The camera was fixed on a frame while the potted trees were moved underneath on a conveyor belt. To account for changing illumination conditions, a white reference bar was included at the edge of each image line. Conventional preprocessing of the images, i.e., dividing measured values by values from the white reference bar in the same image line, failed and resulted in bad quality spectra with oscillation patterns that are most likely due to wavelength shifts across the sensor’s field of view (smile effect). An additional hyperspectral data set of a Spectralon white reference panel could be used to characterize and correct the oscillations introduced by the division, resulting in a high quality spectra that document the effects of herbicides on the reflectance characteristics of coniferous trees. While the spectra of untreated trees remained constant over time, there were clear temporal changes in the spectra of trees treated with both herbicides. One herbicide worked within days, the other one within weeks. Ground-based imaging spectroscopy with meaningful preprocessing proved to be an appropriate tool for monitoring the effects of herbicides on potted plants.
Journal Article
Current status of remote sensing for studying the impacts of hurricanes on mangrove forests in the coastal United States
by
Gebrie, Amare
,
Watt, Michael S
,
Hendy, Ian
in
Artificial satellites in remote sensing
,
Biodiversity
,
Biomass
2024
Hurricane incidents have become increasingly frequent along the coastal United States and have had a negative impact on the mangrove forests and their ecosystem services across the southeastern region. Mangroves play a key role in providing coastal protection during hurricanes by attenuating storm surges and reducing erosion. However, their resilience is being increasingly compromised due to climate change through sea level rises and the greater intensity of storms. This article examines the role of remote sensing tools in studying the impacts of hurricanes on mangrove forests in the coastal United States. Our results show that various remote sensing tools including satellite imagery, Light detection and ranging (LiDAR) and unmanned aerial vehicles (UAVs) have been used to detect mangrove damage, monitor their recovery and analyze their 3D structural changes. Landsat 8 OLI (14%) has been particularly useful in long-term assessments, followed by Landsat 5 TM (9%) and NASA G-LiHT LiDAR (8%). Random forest (24%) and linear regression (24%) models were the most common modeling techniques, with the former being the most frequently used method for classifying satellite images. Some studies have shown significant mangrove canopy loss after major hurricanes, and damage was seen to vary spatially based on factors such as proximity to oceans, elevation and canopy structure, with taller mangroves typically experiencing greater damage. Recovery rates after hurricane-induced damage also vary, as some areas were seen to show rapid regrowth within months while others remained impacted after many years. The current challenges include capturing fine-scale changes owing to the dearth of remote sensing data with high temporal and spatial resolution. This review provides insights into the current remote sensing applications used in hurricane-prone mangrove habitats and is intended to guide future research directions, inform coastal management strategies and support conservation efforts.
Journal Article