Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Early Detection of Invasive Exotic Trees Using UAV and Manned Aircraft Multispectral and LiDAR Data
by
Morgenroth, Justin
, Pearse, Grant D.
, Watt, Michael S.
, Dash, Jonathan P.
, Paul, Thomas S. H.
in
Airborne lasers
/ Aircraft
/ Aircraft detection
/ Algorithms
/ artificial intelligence
/ Automation
/ bio-security
/ Classification
/ Cones
/ Coniferous trees
/ Conifers
/ data collection
/ Datasets
/ drones
/ Ecosystem services
/ ecosystems
/ Flowers & plants
/ Forestry
/ Grasslands
/ High resolution
/ Identification methods
/ introduced plants
/ invasion monitoring
/ invasive alien plants
/ Invasive plants
/ Invasive species
/ landscapes
/ Learning algorithms
/ LiDAR
/ logistic regression
/ Machine learning
/ monitoring
/ multispectral
/ New Zealand
/ Nonnative species
/ Pine trees
/ Pinus ponderosa
/ Pinus sylvestris
/ Plantations
/ random forest
/ Regression analysis
/ Remote sensing
/ RPAS
/ Scanning
/ Sensors
/ spatial data
/ Surveillance
/ Trees
/ Unmanned aerial vehicles
/ Unmanned aircraft
/ Vegetation
2019
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Early Detection of Invasive Exotic Trees Using UAV and Manned Aircraft Multispectral and LiDAR Data
by
Morgenroth, Justin
, Pearse, Grant D.
, Watt, Michael S.
, Dash, Jonathan P.
, Paul, Thomas S. H.
in
Airborne lasers
/ Aircraft
/ Aircraft detection
/ Algorithms
/ artificial intelligence
/ Automation
/ bio-security
/ Classification
/ Cones
/ Coniferous trees
/ Conifers
/ data collection
/ Datasets
/ drones
/ Ecosystem services
/ ecosystems
/ Flowers & plants
/ Forestry
/ Grasslands
/ High resolution
/ Identification methods
/ introduced plants
/ invasion monitoring
/ invasive alien plants
/ Invasive plants
/ Invasive species
/ landscapes
/ Learning algorithms
/ LiDAR
/ logistic regression
/ Machine learning
/ monitoring
/ multispectral
/ New Zealand
/ Nonnative species
/ Pine trees
/ Pinus ponderosa
/ Pinus sylvestris
/ Plantations
/ random forest
/ Regression analysis
/ Remote sensing
/ RPAS
/ Scanning
/ Sensors
/ spatial data
/ Surveillance
/ Trees
/ Unmanned aerial vehicles
/ Unmanned aircraft
/ Vegetation
2019
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Early Detection of Invasive Exotic Trees Using UAV and Manned Aircraft Multispectral and LiDAR Data
by
Morgenroth, Justin
, Pearse, Grant D.
, Watt, Michael S.
, Dash, Jonathan P.
, Paul, Thomas S. H.
in
Airborne lasers
/ Aircraft
/ Aircraft detection
/ Algorithms
/ artificial intelligence
/ Automation
/ bio-security
/ Classification
/ Cones
/ Coniferous trees
/ Conifers
/ data collection
/ Datasets
/ drones
/ Ecosystem services
/ ecosystems
/ Flowers & plants
/ Forestry
/ Grasslands
/ High resolution
/ Identification methods
/ introduced plants
/ invasion monitoring
/ invasive alien plants
/ Invasive plants
/ Invasive species
/ landscapes
/ Learning algorithms
/ LiDAR
/ logistic regression
/ Machine learning
/ monitoring
/ multispectral
/ New Zealand
/ Nonnative species
/ Pine trees
/ Pinus ponderosa
/ Pinus sylvestris
/ Plantations
/ random forest
/ Regression analysis
/ Remote sensing
/ RPAS
/ Scanning
/ Sensors
/ spatial data
/ Surveillance
/ Trees
/ Unmanned aerial vehicles
/ Unmanned aircraft
/ Vegetation
2019
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Early Detection of Invasive Exotic Trees Using UAV and Manned Aircraft Multispectral and LiDAR Data
Journal Article
Early Detection of Invasive Exotic Trees Using UAV and Manned Aircraft Multispectral and LiDAR Data
2019
Request Book From Autostore
and Choose the Collection Method
Overview
Exotic conifers can provide significant ecosystem services, but in some environments, they have become invasive and threaten indigenous ecosystems. In New Zealand, this phenomenon is of considerable concern as the area occupied by invasive exotic trees is large and increasing rapidly. Remote sensing methods offer a potential means of identifying and monitoring land infested by these trees, enabling managers to efficiently allocate resources for their control. In this study, we sought to develop methods for remote detection of exotic invasive trees, namely Pinus sylvestris and P. ponderosa. Critically, the study aimed to detect these species prior to the onset of maturity and coning as this is important for preventing further spread. In the study environment in New Zealand’s South Island, these species reach maturity and begin bearing cones at a young age. As such, detection of these smaller individuals requires specialist methods and very high-resolution remote sensing data. We examined the efficacy of classifiers developed using two machine learning algorithms with multispectral and laser scanning data collected from two platforms—manned aircraft and unmanned aerial vehicles (UAV). The study focused on a localized conifer invasion originating from a multi-species pine shelter belt in a grassland environment. This environment provided a useful means of defining the detection thresholds of the methods and technologies employed. An extensive field dataset including over 17,000 trees (height range = 1 cm to 476 cm) was used as an independent validation dataset for the detection methods developed. We found that data from both platforms and using both logistic regression and random forests for classification provided highly accurate (kappa < 0.996 ) detection of invasive conifers. Our analysis showed that the data from both UAV and manned aircraft was useful for detecting trees down to 1 m in height and therefore shorter than 99.3% of the coning individuals in the study dataset. We also explored the relative contribution of both multispectral and airborne laser scanning (ALS) data in the detection of invasive trees through fitting classification models with different combinations of predictors and found that the most useful models included data from both sensors. However, the combination of ALS and multispectral data did not significantly improve classification accuracy. We believe that this was due to the simplistic vegetation and terrain structure in the study site that resulted in uncomplicated separability of invasive conifers from other vegetation. This study provides valuable new knowledge of the efficacy of detecting invasive conifers prior to the onset of coning using high-resolution data from UAV and manned aircraft. This will be an important tool in managing the spread of these important invasive plants.
MBRLCatalogueRelatedBooks
Related Items
Related Items
We currently cannot retrieve any items related to this title. Kindly check back at a later time.
This website uses cookies to ensure you get the best experience on our website.