Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
810 result(s) for "Weber, Sebastian"
Sort by:
Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy
Understanding the transfer of spin angular momentum is essential in modern magnetism research. A model case is the generation of magnons in magnetic insulators by heating an adjacent metal film. Here, we reveal the initial steps of this spin Seebeck effect with <27 fs time resolution using terahertz spectroscopy on bilayers of ferrimagnetic yttrium iron garnet and platinum. Upon exciting the metal with an infrared laser pulse, a spin Seebeck current j s arises on the same ~100 fs time scale on which the metal electrons thermalize. This observation highlights that efficient spin transfer critically relies on carrier multiplication and is driven by conduction electrons scattering off the metal–insulator interface. Analytical modeling shows that the electrons’ dynamics are almost instantaneously imprinted onto j s because their spins have a correlation time of only ~4 fs and deflect the ferrimagnetic moments without inertia. Applications in material characterization, interface probing, spin-noise spectroscopy and terahertz spin pumping emerge. Probing spin pumping in the terahertz regime allows one to reveal its initial elementary steps. Here, the authors show that the formation of the spin Seebeck current in YIG/Pt critically relies on hot thermalized metal electrons because they impinge on the metal-insulator interface with maximum noise.
Human Factors and Technological Characteristics Influencing the Interaction of Medical Professionals With Artificial Intelligence–Enabled Clinical Decision Support Systems: Literature Review
The digitization and automation of diagnostics and treatments promise to alter the quality of health care and improve patient outcomes, whereas the undersupply of medical personnel, high workload on medical professionals, and medical case complexity increase. Clinical decision support systems (CDSSs) have been proven to help medical professionals in their everyday work through their ability to process vast amounts of patient information. However, comprehensive adoption is partially disrupted by specific technological and personal characteristics. With the rise of artificial intelligence (AI), CDSSs have become an adaptive technology with human-like capabilities and are able to learn and change their characteristics over time. However, research has not reflected on the characteristics and factors essential for effective collaboration between human actors and AI-enabled CDSSs. Our study aims to summarize the factors influencing effective collaboration between medical professionals and AI-enabled CDSSs. These factors are essential for medical professionals, management, and technology designers to reflect on the adoption, implementation, and development of an AI-enabled CDSS. We conducted a literature review including 3 different meta-databases, screening over 1000 articles and including 101 articles for full-text assessment. Of the 101 articles, 7 (6.9%) met our inclusion criteria and were analyzed for our synthesis. We identified the technological characteristics and human factors that appear to have an essential effect on the collaboration of medical professionals and AI-enabled CDSSs in accordance with our research objective, namely, training data quality, performance, explainability, adaptability, medical expertise, technological expertise, personality, cognitive biases, and trust. Comparing our results with those from research on non-AI CDSSs, some characteristics and factors retain their importance, whereas others gain or lose relevance owing to the uniqueness of human-AI interactions. However, only a few (1/7, 14%) studies have mentioned the theoretical foundations and patient outcomes related to AI-enabled CDSSs. Our study provides a comprehensive overview of the relevant characteristics and factors that influence the interaction and collaboration between medical professionals and AI-enabled CDSSs. Rather limited theoretical foundations currently hinder the possibility of creating adequate concepts and models to explain and predict the interrelations between these characteristics and factors. For an appropriate evaluation of the human-AI collaboration, patient outcomes and the role of patients in the decision-making process should be considered.
Realization of a Density-Dependent Peierls Phase in a Synthetic, Spin-Orbit Coupled Rydberg System
We experimentally realize a Peierls phase in the hopping amplitude of excitations carried by Rydberg atoms, and observe the resulting characteristic chiral motion in a minimal setup of three sites. Our demonstration relies on the intrinsic spin-orbit coupling of the dipolar exchange interaction combined with time-reversal symmetry breaking by a homogeneous external magnetic field. Remarkably, the phase of the hopping amplitude between two sites strongly depends on the occupancy of the third site, thus leading to a correlated hopping associated with a density-dependent Peierls phase. We experimentally observe this density-dependent hopping and show that the excitations behave as anyonic particles with a nontrivial phase under exchange. Finally, we confirm the dependence of the Peierls phase on the geometrical arrangement of the Rydberg atoms.
Nonequilibrium band occupation and optical response of gold after ultrafast XUV excitation
Free electron lasers offer unique properties to study matter in states far from equilibrium as they combine short pulses with a large range of photon energies. In particular, the possibility to excite core states drives new relaxation pathways that, in turn, also change the properties of the optically and chemically active electrons. Here, we present a theoretical model for the dynamics of the nonequilibrium occupation of the different energy bands in solid gold driven by exciting deep core states. The resulting optical response is in excellent agreement with recent measurements and, combined with our model, provides a quantitative benchmark for the description of electron–phonon coupling in strongly driven gold. Focusing on sub-picosecond time scales, we find essential differences between the dynamics induced by XUV and visible light.
Influence of Electronic Non-Equilibrium on Energy Distribution and Dissipation in Aluminum Studied with an Extended Two-Temperature Model
When an ultrashort laser pulse excites a metal surface, only a few of all the free electrons absorb a photon. The resulting non-equilibrium electron energy distribution thermalizes quickly to a hot Fermi distribution. The further energy dissipation is usually described in the framework of a two-temperature model, considering the phonons of the crystal lattice as a second subsystem. Here, we present an extension of the two-temperature model including the non-equilibrium electrons as a third subsystem. The model was proposed initially by E. Carpene and later improved by G.D. Tsibidis. We introduce further refinements, in particular, a temperature-dependent electron–electron thermalization time and an extended energy interval for the excitation function. We show results comparing the transient energy densities as well as the energy-transfer rates of the original equilibrium two-temperature description and the improved extended two-temperature model, respectively. Looking at the energy distribution of all electrons, we find good agreement in the non-equilibrium distribution of the extended two-temperature model with results from a kinetic description solving full Boltzmann collision integrals. The model provides a convenient tool to trace non-equilibrium electrons at small computational effort. As an example, we determine the dynamics of high-energy electrons observable in photo-electron spectroscopy. The comparison of the calculated spectral densities with experimental results demonstrates the necessity of considering electronic non-equilibrium distributions and electron–electron thermalization processes in time- and energy-resolved analyses.
Intrinsically energy-dependent spin dynamics in ultrafast demagnetization
Ultrafast magnetization dynamics has the potential to spark a new era of information technology by harnessing the interaction between spin and light. Recent studies indicate a complex interplay between the microscopic spin and band structure dynamics and the magneto-optical signals, which are typically exploited in experiments. Using a kinetic model based on microscopic Boltzmann collision integrals, we demonstrate that the spin dynamics are intrinsically energy-dependent due to the non-equilibrium dynamics of carrier distributions and the band structure. We find that the energy-resolved spin dynamics of unoccupied states (holes) differs strongly from those of the electrons. This has major implications for the magneto-optical response, which we reveal to be determined by hole dynamics on early timescales and by electron dynamics on longer timescales. Energy-resolved optical experiments of ultrafast magnetization dynamics indicate a complex interplay between the spin and band structure dynamics and the magneto-optical signal. In this paper, the authors demonstrate that the spin dynamics are intrinsically energy-dependent and that the magneto-optical response is determined by nonequilibrium hole dynamics on early timescales.
Reopening strategies, mobility and COVID-19 infections in Europe: panel data analysis
ObjectivesCharacterise the reopening policies of European countries after the first wave of infections and evaluate how these policies affected economic activity and subsequent infections.Study designUsing publicly available data, we construct a database of reopening policy announcements by country authorities and develop measures related to the speed and timing of reopening. Using panel data regressions, we then assess how a country’s reopening action subsequently affected its mobility and COVID-19 infections. Samples of 22 European countries used in the study comprise: Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Ireland, Israel, Italy, Netherlands, Norway, Poland, Portugal, Romania, Russia, Spain, Switzerland, Turkey, Ukraine and the UK.Main outcomesMobility index as well as COVID-19 case and death counts.ResultsReopening policies are associated with a 1.5 percentage point increase in mobility and a 4% increase in subsequent infections after 2 weeks. However, some reopening strategies are associated with lower infection risk. In particular, early and fast reopeners saw 5%–10% increases in infections relative to those that opened later and adopted a gradual approach. The sequencing of sectoral reopenings matters, with infection amplification effects larger for some sectors (like retail and events) than others (like schools).ConclusionsFindings suggest some merit of gradual and late reopening strategies with a careful sequencing of sectoral openings based on their infection amplification risks.
Classification of melanocytic lesions using direct illumination multispectral imaging
With rising melanoma incidence and mortality, early detection and surgical removal of primary lesions is essential. Multispectral imaging is a new, non-invasive technique that can facilitate skin cancer detection by measuring the reflectance spectra of biological tissues. Currently, incident illumination allows little light to be reflected from deeper skin layers due to high surface reflectance. A pilot study was conducted at the University Hospital Basel to evaluate, whether multispectral imaging with direct light coupling could extract more information from deeper skin layers for more accurate dignity classification of melanocytic lesions. 27 suspicious pigmented lesions from 23 patients were included (6 melanomas, 6 dysplastic nevi, 12 melanocytic nevi, 3 other). Lesions were imaged before excision using a prototype snapshot mosaic multispectral camera with incident and direct illumination with subsequent dignity classification by a pre-trained multispectral image analysis model. Using incident light, a sensitivity of 83.3% and a specificity of 58.8% were achieved compared to dignity as determined by histopathological examination. Direct light coupling resulted in a superior sensitivity of 100% and specificity of 82.4%. Convolutional neural network classification of corresponding red, green, and blue lesion images resulted in 16.7% lower sensitivity (83.3%, 5/6 malignant lesions detected) and 20.9% lower specificity (61.5%) compared to direct light coupling with multispectral image classification. Our results show that incorporating direct light multispectral imaging into the melanoma detection process could potentially increase the accuracy of dignity classification. This newly evaluated illumination method could improve multispectral applications in skin cancer detection. Further larger studies are needed to validate the camera prototype.
Evolution of relict floodplain forest in river stretches of Western and Central Europe as affected by river infrastructure networks
We studied the impact of infrastructure networks on relict floodplain forest along three stretches of the Upper Rhine (Kembs-Efringen-Kirchen, Strasbourg-Kehl and Beinheim-Iffezheim) and the Inn-Danube (Mulheim-Obernberg, Passau-Ingling and Engelhartszell-Jochenstein), each on the border between two countries. We analysed land use patterns within a 500 m wide buffer area along the main channel using photo-interpretation and compared the situations between the 1950s, 1980’s and 2010’s. Temporal changes were assessed with transition matrices and selected spatial metrics, including fragmentation indices. Over this period, forest area remained similar at three sites, increased slightly at two sites and decreased at one site. However, on average, 12.5% of floodplain forest had changed location (range: 7.3% (Engelhartszell-Jochenstein)– 26.5% (Kembs-Efringen-Kirchen)). The natural development of unmanaged areas and agricultural abandonment after World War II has led to the emergence of young riparian forests along rivers. In the Upper Rhine region, the results showed asymmetry in these two factors, with unmanaged natural areas most important on the French side and agricultural abandonment on the German side. Along the Inn-Danube, agricultural abandonment has led to an increase or stagnation of floodplain forest areas. In most cases, development of transport infrastructure between the 1950s and 2010s has caused fragmentation of the forest area, reducing the relict forest to a patchy green corridor with reduced functionality and interfacing. To go further and improve the management of these relict forests, we have to investigate the interdependency between practices related to infrastructure operation and the role that biodiversity plays for stakeholders.
Phase I dose-escalation oncology trials with sequential multiple schedules
Background Conventional methods for phase I dose-escalation trials in oncology are based on a single treatment schedule only. More recently, however, multiple schedules are more frequently investigated in the same trial. Methods Here, we consider sequential phase I trials, where the trial proceeds with a new schedule (e.g. daily or weekly dosing) once the dose escalation with another schedule has been completed. The aim is to utilize the information from both the completed and the ongoing schedules to inform decisions on the dose level for the next dose cohort. For this purpose, we adapted the time-to-event pharmacokinetics (TITE-PK) model, which were originally developed for simultaneous investigation of multiple schedules. TITE-PK integrates information from multiple schedules using a pharmacokinetics (PK) model. Results In a simulation study, the developed approach is compared to the bridging continual reassessment method and the Bayesian logistic regression model using a meta-analytic-predictive prior. TITE-PK results in better performance than comparators in terms of recommending acceptable dose and avoiding overly toxic doses for sequential phase I trials in most of the scenarios considered. Furthermore, better performance of TITE-PK is achieved while requiring similar number of patients in the simulated trials. For the scenarios involving one schedule, TITE-PK displays similar performance with alternatives in terms of acceptable dose recommendations. The R and Stan code for the implementation of an illustrative sequential phase I trial example in oncology is publicly available ( https://github.com/gunhanb/TITEPK_sequential ). Conclusion In phase I oncology trials with sequential multiple schedules, the use of all relevant information is of great importance. For these trials, the adapted TITE-PK which combines information using PK principles is recommended.