Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
239
result(s) for
"Weiss, Louis M."
Sort by:
Boron Chemicals in Drug Discovery and Development: Synthesis and Medicinal Perspective
by
Saito, Mariko
,
Weiss, Louis M.
,
Das, Sasmita
in
aminoboronic acids
,
Amyotrophic lateral sclerosis
,
bezoxaboroles
2022
A standard goal of medicinal chemists has been to discover efficient and potent drug candidates with specific enzyme-inhibitor abilities. In this regard, boron-based bioactive compounds have provided amphiphilic properties to facilitate interaction with protein targets. Indeed, the spectrum of boron-based entities as drug candidates against many diseases has grown tremendously since the first clinically tested boron-based drug, Velcade. In this review, we collectively represent the current boron-containing drug candidates, boron-containing retinoids, benzoxaboroles, aminoboronic acid, carboranes, and BODIPY, for the treatment of different human diseases.In addition, we also describe the synthesis, key structure–activity relationship, and associated biological activities, such as antimicrobial, antituberculosis, antitumor, antiparasitic, antiprotozoal, anti-inflammatory, antifolate, antidepressant, antiallergic, anesthetic, and anti-Alzheimer’s agents, as well as proteasome and lipogenic inhibitors. This compilation could be very useful in the exploration of novel boron-derived compounds against different diseases, with promising efficacy and lesser side effects.
Journal Article
The Toxoplasma gondii Cyst Wall Protein CST1 Is Critical for Cyst Wall Integrity and Promotes Bradyzoite Persistence
by
Tomita, Tadakimi
,
Weiss, Louis M.
,
Bzik, David J.
in
Acquired immune deficiency syndrome
,
AIDS
,
Amino Acid Sequence
2013
Toxoplasma gondii infects up to one third of the world's population. A key to the success of T. gondii as a parasite is its ability to persist for the life of its host as bradyzoites within tissue cysts. The glycosylated cyst wall is the key structural feature that facilitates persistence and oral transmission of this parasite. Because most of the antibodies and reagents that recognize the cyst wall recognize carbohydrates, identification of the components of the cyst wall has been technically challenging. We have identified CST1 (TGME49_064660) as a 250 kDa SRS (SAG1 related sequence) domain protein with a large mucin-like domain. CST1 is responsible for the Dolichos biflorus Agglutinin (DBA) lectin binding characteristic of T. gondii cysts. Deletion of CST1 results in reduced cyst number and a fragile brain cyst phenotype characterized by a thinning and disruption of the underlying region of the cyst wall. These defects are reversed by complementation of CST1. Additional complementation experiments demonstrate that the CST1-mucin domain is necessary for the formation of a normal cyst wall structure, the ability of the cyst to resist mechanical stress, and binding of DBA to the cyst wall. RNA-seq transcriptome analysis demonstrated dysregulation of bradyzoite genes within the various cst1 mutants. These results indicate that CST1 functions as a key structural component that confers essential sturdiness to the T. gondii tissue cyst critical for persistence of bradyzoite forms.
Journal Article
Identification of compounds that suppress Toxoplasma gondii tachyzoites and bradyzoites
by
Weiss, Louis M.
,
Kato, Kentaro
,
Murata, Yuho
in
Animals
,
Antiprotozoal Agents - chemistry
,
Antiprotozoal Agents - isolation & purification
2017
Drug treatment for toxoplasmosis is problematic, because current drugs cannot eradicate latent infection with Toxoplasma gondii and can cause bone marrow toxicity. Because latent infection remains after treatment, relapse of infection is a problem in both infections in immunocompromised patients and in congenitally infected patients. To identify lead compounds for novel drugs against Toxoplasma gondii, we screened a chemical compound library for anti-Toxoplasma activity, host cell cytotoxicity, and effect on bradyzoites. Of 878 compounds screened, 83 demonstrated >90% parasite growth inhibition. After excluding compounds that affected host cell viability, we further characterized two compounds, tanshinone IIA and hydroxyzine, which had IC50 values for parasite growth of 2.5 μM and 1.0 μM, respectively, and had no effect on host cell viability at 25 μM. Both tanshinone IIA and hydroxyzine inhibited parasite replication after invasion and both reduced the number of in vitro-induced bradyzoites, whereas, pyrimethamine, the current therapy, had no effect on bradyzoites. Both tanshinone IIA and hydroxyzine are potent lead compounds for further medicinal chemistry. The method presented for evaluating compounds for bradyzoite efficacy represents a new approach to the development of anti-Toxoplasma drugs to eliminate latency and treat acute infection.
Journal Article
The role of microsporidian polar tube protein 4 (PTP4) in host cell infection
by
Delbac, Frédéric
,
Weiss, Louis M.
,
Zhou, Zeyang
in
Acquired immune deficiency syndrome
,
Agronomy
,
AIDS
2017
Microsporidia have been identified as pathogens that have important effects on our health, food security and economy. A key to the success of these obligate intracellular pathogens is their unique invasion organelle, the polar tube, which delivers the nucleus containing sporoplasm into host cells during invasion. Due to the size of the polar tube, the rapidity of polar tube discharge and sporoplasm passage, and the absence of genetic techniques for the manipulation of microsporidia, study of this organelle has been difficult and there is relatively little known regarding polar tube formation and the function of the proteins making up this structure. Herein, we have characterized polar tube protein 4 (PTP4) from the microsporidium Encephalitozoon hellem and found that a monoclonal antibody to PTP4 labels the tip of the polar tube suggesting that PTP4 might be involved in a direct interaction with host cell proteins during invasion. Further analyses employing indirect immunofluorescence (IFA), enzyme-linked immunosorbent (ELISA) and fluorescence-activated cell sorting (FACS) assays confirmed that PTP4 binds to mammalian cells. The addition of either recombinant PTP4 protein or anti-PTP4 antibody reduced microsporidian infection of its host cells in vitro. Proteomic analysis of PTP4 bound to host cell membranes purified by immunoprecipitation identified transferrin receptor 1 (TfR1) as a potential host cell interacting partner for PTP4. Additional experiments revealed that knocking out TfR1, adding TfR1 recombinant protein into cell culture, or adding anti-TfR1 antibody into cell culture significantly reduced microsporidian infection rates. These results indicate that PTP4 is an important protein competent of the polar tube involved in the mechanism of host cell infection utilized by these pathogens.
Journal Article
A Toxoplasma gondii O-glycosyltransferase that modulates bradyzoite cyst wall rigidity is distinct from host homologues
2024
Infection with the apicomplexan protozoan
Toxoplasma gondii
can be life-threatening in immunocompromised hosts. Transmission frequently occurs through the oral ingestion of
T. gondii
bradyzoite cysts, which transition to tachyzoites, disseminate, and then form cysts containing bradyzoites in the central nervous system, resulting in latent infection. Encapsulation of bradyzoites by a cyst wall is critical for immune evasion, survival, and transmission. O-glycosylation of the protein CST1 by the mucin-type O-glycosyltransferase
T. gondii
(Txg
)
GalNAc-T3 influences cyst wall rigidity and stability. Here, we report X-ray crystal structures of TxgGalNAc-T3, revealing multiple features that are strictly conserved among its apicomplexan homologues. This includes a unique 2
nd
metal that is coupled to substrate binding and enzymatic activity in vitro and cyst wall O-glycosylation in
T. gondii
. The study illustrates the divergence of pathogenic protozoan GalNAc-Ts from their host homologues and lays the groundwork for studying apicomplexan GalNAc-Ts as therapeutic targets in disease.
A Toxoplasma gondii mucin-type O-glycosyltransferase uses a unique catalytic mechanism to modify bradyzoite cyst wall proteins. A second metal coupled to substrate binding is required for catalysis, while an active site glutamate suggests a double-displacement mechanism.
Journal Article
Microsporidia Interact with Host Cell Mitochondria via Voltage-Dependent Anion Channels Using Sporoplasm Surface Protein 1
2019
Microsporidia are important opportunistic human pathogens in immune-suppressed individuals, such as those with HIV/AIDS and recipients of organ transplants. The sporoplasm is critical for establishing microsporidian infection. Despite the biological importance of this structure for transmission, there is limited information about its structure and composition that could be targeted for therapeutic intervention. Here, we identified a novel E. hellem sporoplasm surface protein, EhSSP1, and demonstrated that it can bind to host cell mitochondria via host VDAC. Our data strongly suggest that the interaction between SSP1 and VDAC is important for the association of mitochondria with the parasitophorous vacuole during microsporidian infection. In addition, binding of SSP1 to the host cell is associated with the final steps of invasion in the invasion synapse. Microsporidia are opportunistic intracellular pathogens that can infect a wide variety of hosts ranging from invertebrates to vertebrates. During invasion, the microsporidian polar tube pushes into the host cell, creating a protective microenvironment, the invasion synapse, into which the sporoplasm extrudes. Within the synapse, the sporoplasm then invades the host cell, forming a parasitophorous vacuole (PV). Using a proteomic approach, we identified Encephalitozoon hellem sporoplasm surface protein 1 (EhSSP1), which localized to the surface of extruded sporoplasms. EhSSP1 was also found to interact with polar tube protein 4 (PTP4). Recombinant EhSSP1 (rEhSSP1) bound to human foreskin fibroblasts, and both anti-EhSSP1 and rEhSSP1 caused decreased levels of host cell invasion, suggesting that interaction of SSP1 with the host cell was involved in invasion. Coimmunoprecipitation (Co-IP) followed by proteomic analysis identified host cell voltage-dependent anion channels (VDACs) as EhSSP1 interacting proteins. Yeast two-hybrid assays demonstrated that EhSSP1 was able to interact with VDAC1, VDAC2, and VDAC3. rEhSSP1 colocalized with the host mitochondria which were associated with microsporidian PVs in infected cells. Transmission electron microscopy revealed that the outer mitochondrial membrane interacted with meronts and the PV membrane, mitochondria clustered around meronts, and the VDACs were concentrated at the interface of mitochondria and parasite. Knockdown of VDAC1, VDAC2, and VDAC3 in host cells resulted in significant decreases in the number and size of the PVs and a decrease in mitochondrial PV association. The interaction of EhSSP1 with VDAC probably plays an important part in energy acquisition by microsporidia via its role in the association of mitochondria with the PV. IMPORTANCE Microsporidia are important opportunistic human pathogens in immune-suppressed individuals, such as those with HIV/AIDS and recipients of organ transplants. The sporoplasm is critical for establishing microsporidian infection. Despite the biological importance of this structure for transmission, there is limited information about its structure and composition that could be targeted for therapeutic intervention. Here, we identified a novel E. hellem sporoplasm surface protein, EhSSP1, and demonstrated that it can bind to host cell mitochondria via host VDAC. Our data strongly suggest that the interaction between SSP1 and VDAC is important for the association of mitochondria with the parasitophorous vacuole during microsporidian infection. In addition, binding of SSP1 to the host cell is associated with the final steps of invasion in the invasion synapse.
Journal Article
Mapping a Toxoplasma gondii interactome by crosslinking mass spectrometry and machine learning
by
Guevara, Rebekah B.
,
Sidoli, Simone
,
Tomita, Tadakimi
in
Acquired immune deficiency syndrome
,
AIDS
,
Epidemiology
2025
Our work presents a novel application of crosslinking mass spectrometry (XL-MS) integrated with machine learning to systematically characterize the cytosolic protein-protein interactions in Toxoplasma gondii —a pathogen of significant clinical and epidemiological interest. This study addresses an important gap in microbial proteomics by leveraging advanced XL-MS techniques to capture transient and novel interactions, which are often challenging to detect with conventional methods. By combining both MS-cleavable and non-cleavable strategies with a robust machine learning approach, we were able to significantly enhance the identification of genuine protein interactions. The methodology described not only improves the depth and accuracy of interactome analysis but also offers a framework that can be applied to other complex microbial systems. We believe that the insights gained from our study will be of great interest to the microbiology community, particularly researchers focusing on host-pathogen interactions and the molecular mechanisms underlying parasitic infections.
Journal Article
Toxoplasma gondii Requires Glycogen Phosphorylase for Balancing Amylopectin Storage and for Efficient Production of Brain Cysts
by
Ma, Yanfen
,
Tomita, Tadakimi
,
Weiss, Louis M.
in
Amylopectin
,
Amylopectin - genetics
,
Amylopectin - metabolism
2017
In immunocompromised hosts, latent infection with Toxoplasma gondii can reactivate from tissue cysts, leading to encephalitis. A characteristic of T. gondii bradyzoites in tissue cysts is the presence of amylopectin granules. The regulatory mechanisms and role of amylopectin accumulation in this organism are not fully understood. The T. gondii genome encodes a putative glycogen phosphorylase (TgGP), and mutants were constructed to manipulate the activity of TgGP and to evaluate the function of TgGP in amylopectin storage. Both a stop codon mutant (Pru/TgGP S25stop [expressing a Ser-to-stop codon change at position 25 in TgGP]) and a phosphorylation null mutant (Pru/TgGP S25A [expressing a Ser-to-Ala change at position 25 in TgGp]) mutated at Ser25 displayed amylopectin accumulation, while the phosphorylation-mimetic mutant (Pru/TgGP S25E [expressing a Ser-to-Glu change at position 25 in TgGp]) had minimal amylopectin accumulation under both tachyzoite and bradyzoite growth conditions. The expression of active TgGP S25S or TgGP S25E restored amylopectin catabolism in Pru/TgGP S25A . To understand the relation between GP and calcium-dependent protein kinase 2 (CDPK2), which was recently reported to regulate amylopectin consumption, we knocked out CDPK2 in these mutants. Pru Δcdpk2 /TgGP S25E had minimal amylopectin accumulation, whereas the Δcdpk2 phenotype in the other GP mutants and parental lines displayed amylopectin accumulation. Both the inactive S25A and hyperactive S25E mutant produced brain cysts in infected mice, but the numbers of cysts produced were significantly less than the number produced by the S25S wild-type GP parasite. Complementation that restored amylopectin regulation restored brain cyst production to the control levels seen in infected mice. These data suggest that T. gondii requires tight regulation of amylopectin expression for efficient production of cysts and persistent infections and that GP phosphorylation is a regulatory mechanism involved in amylopectin storage and utilization. IMPORTANCE Toxoplasma gondii is an obligate intracellular parasite that causes disease in immune-suppressed individuals, as well as a fetopathy in pregnant women who acquire infection for the first time during pregnancy. This parasite can differentiate between tachyzoites (seen in acute infection) and bradyzoites (seen in latent infection), and this differentiation is associated with disease relapse. A characteristic of bradyzoites is that they contain cytoplasmic amylopectin granules. The regulatory mechanisms and the roles of amylopectin granules during latent infection remain to be elucidated. We have identified a role of T. gondii glycogen phosphorylase (TgGP) in the regulation of starch digestion and a role of posttranslational modification of TgGP, i.e., phosphorylation of Ser25, in the regulation of amylopectin digestion. By manipulating TgGP activity in the parasite with genome editing, we found that the digestion and storage of amylopectin due to TgGP activity are both important for latency in the brain. Toxoplasma gondii is an obligate intracellular parasite that causes disease in immune-suppressed individuals, as well as a fetopathy in pregnant women who acquire infection for the first time during pregnancy. This parasite can differentiate between tachyzoites (seen in acute infection) and bradyzoites (seen in latent infection), and this differentiation is associated with disease relapse. A characteristic of bradyzoites is that they contain cytoplasmic amylopectin granules. The regulatory mechanisms and the roles of amylopectin granules during latent infection remain to be elucidated. We have identified a role of T. gondii glycogen phosphorylase (TgGP) in the regulation of starch digestion and a role of posttranslational modification of TgGP, i.e., phosphorylation of Ser25, in the regulation of amylopectin digestion. By manipulating TgGP activity in the parasite with genome editing, we found that the digestion and storage of amylopectin due to TgGP activity are both important for latency in the brain.
Journal Article
Toxoplasma gondii PPM3C, a secreted protein phosphatase, affects parasitophorous vacuole effector export
by
Sidoli, Simone
,
Tomita, Tadakimi
,
Weiss, Louis M.
in
Amino acids
,
Animals
,
Biology and Life Sciences
2020
The intracellular parasite Toxoplasma gondii infects a large proportion of humans worldwide and can cause adverse complications in the settings of immune-compromise and pregnancy. T . gondii thrives within many different cell types due in part to its residence within a specialized and heavily modified compartment in which the parasite divides, termed the parasitophorous vacuole. Within this vacuole, numerous proteins optimize intracellular survival following their secretion by the parasite. We investigated the contribution of one of these proteins, TgPPM3C, predicted to contain a PP2C-class serine/threonine phosphatase domain and previously shown to interact with the protein MYR1, an essential component of a putative vacuolar translocon that mediates effector export into the host cell. Parasites lacking the TgPPM3C gene exhibit a minor growth defect in vitro , are avirulent during acute infection in mice, and form fewer cysts in mouse brain during chronic infection. Phosphoproteomic assessment of TgPPM3C deleted parasite cultures demonstrated alterations in the phosphorylation status of many secreted vacuolar proteins including two exported effector proteins, GRA16 and GRA28, as well as MYR1. Parasites lacking TgPPM3C are defective in GRA16 and GRA28 export, but not in the export of other MYR1-dependant effectors. Phosphomimetic mutation of two GRA16 serine residues results in export defects, suggesting that de-phosphorylation is a critical step in the process of GRA16 export. These findings provide another example of the emerging role of phosphatases in regulating the complex environment of the T . gondii parasitophorous vacuole and influencing the export of specific effector proteins from the vacuolar lumen into the host cell.
Journal Article
Reply to Rattanapitoon et al., “Reconsidering the Toxoplasma gondii interactome: opportunities beyond crosslinking mass spectrometry”
2025
REPLY We thank Rattanapitoon and colleagues for their thoughtful comments on our study integrating crosslinking mass spectrometry (XL-MS) with machine learning to map a Toxoplasma gondii interactome. PROTEOMIC “VISIBILITY” AND STAGE-RESTRICTED BIOLOGY We agree that our cytosolic preparation—performed without additional subcellular fractionation—prioritized abundant complexes (e.g., ribosome, proteasome) and that this limits sensitivity to low-abundance or stage-restricted proteins. Mapping a Toxoplasma gondii interactome by crosslinking mass spectrometry and machine learning. mBio 16:e02159-25.
Journal Article