Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
12
result(s) for
"Wetterstrand, Kris A."
Sort by:
Strategic vision for improving human health at The Forefront of Genomics
by
Solomon, Benjamin D.
,
Gunter, Chris
,
Wise, Anastasia L.
in
631/208/212
,
631/208/212/2301
,
692/308/2056
2020
Starting with the launch of the Human Genome Project three decades ago, and continuing after its completion in 2003, genomics has progressively come to have a central and catalytic role in basic and translational research. In addition, studies increasingly demonstrate how genomic information can be effectively used in clinical care. In the future, the anticipated advances in technology development, biological insights, and clinical applications (among others) will lead to more widespread integration of genomics into almost all areas of biomedical research, the adoption of genomics into mainstream medical and public-health practices, and an increasing relevance of genomics for everyday life. On behalf of the research community, the National Human Genome Research Institute recently completed a multi-year process of strategic engagement to identify future research priorities and opportunities in human genomics, with an emphasis on health applications. Here we describe the highest-priority elements envisioned for the cutting-edge of human genomics going forward—that is, at ‘The Forefront of Genomics’.
In this Perspective, authors from the National Human Genome Research Institute (NHGRI) present a vision for human genomics research for the coming decade.
Journal Article
A Catalog of Reference Genomes from the Human Microbiome
by
Zeng, Qiandong
,
Cree, Andrew
,
Muzny, Donna M.
in
Amino acids
,
Bacteria
,
Bacteria - classification
2010
The human microbiome refers to the community of microorganisms, including prokaryotes, viruses, and microbial eukaryotes, that populate the human body. The National Institutes of Health launched an initiative that focuses on describing the diversity of microbial species that are associated with health and disease. The first phase of this initiative includes the sequencing of hundreds of microbial reference genomes, coupled to metagenomic sequencing from multiple body sites. Here we present results from an initial reference genome sequencing of 178 microbial genomes. From 547,968 predicted polypeptides that correspond to the gene complement of these strains, previously unidentified (\"novel\") polypeptides that had both unmasked sequence length greater than 100 amino acids and no BLASTP match to any nonreference entry in the nonredundant subset were defined. This analysis resulted in a set of 30,867 polypeptides, of which 29,987 (̃97%) were unique. In addition, this set of microbial genomes allows for ̃40% of random sequences from the microbiome of the gastrointestinal tract to be associated with organisms based on the match criteria used. Insights into pan-genome analysis suggest that we are still far from saturating microbial species genetic data sets. In addition, the associated metrics and standards used by our group for quality assurance are presented.
Journal Article
Structure, function and diversity of the healthy human microbiome
by
Zeng, Qiandong
,
Wortman, Jennifer R
,
Muzny, Donna M
in
631/158/670
,
631/208/212/2142
,
631/326/2565/2134
2012
Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.
The Human Microbiome Project Consortium reports the first results of their analysis of microbial communities from distinct, clinically relevant body habitats in a human cohort; the insights into the microbial communities of a healthy population lay foundations for future exploration of the epidemiology, ecology and translational applications of the human microbiome.
The human genome
The Human Microbiome Project (HMP), supported by the National Institutes of Health Common Fund, has the goal of characterizing the microbial communities that inhabit and interact with the human body in sickness and in health. In two Articles in this issue of
Nature
, the HMP Consortium presents the first population-scale details of the organismal and functional composition of the microbiota across five areas of the body. An associated News & Views discusses the initial results — which, along with those of a series of co-publications, already constitute the most extensive catalogue of organisms and genes related to the human microbiome yet published — and highlights some of the major questions that the project will tackle in the next few years.
Journal Article
A framework for human microbiome research
by
Zeng, Qiandong
,
Wortman, Jennifer R
,
Muzny, Donna M
in
631/208/212/2142
,
631/326/2565/2134
,
692/308
2012
A variety of microbial communities and their genes (the microbiome) exist throughout the human body, with fundamental roles in human health and disease. The National Institutes of Health (NIH)-funded Human Microbiome Project Consortium has established a population-scale framework to develop metagenomic protocols, resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 or 18 body sites up to three times, which have generated 5,177 microbial taxonomic profiles from 16S ribosomal RNA genes and over 3.5 terabases of metagenomic sequence so far. In parallel, approximately 800 reference strains isolated from the human body have been sequenced. Collectively, these data represent the largest resource describing the abundance and variety of the human microbiome, while providing a framework for current and future studies.
The Human Microbiome Project Consortium has established a population-scale framework to study a variety of microbial communities that exist throughout the human body, enabling the generation of a range of quality-controlled data as well as community resources.
The human genome
The Human Microbiome Project (HMP), supported by the National Institutes of Health Common Fund, has the goal of characterizing the microbial communities that inhabit and interact with the human body in sickness and in health. In two Articles in this issue of
Nature
, the HMP Consortium presents the first population-scale details of the organismal and functional composition of the microbiota across five areas of the body. An associated News & Views discusses the initial results — which, along with those of a series of co-publications, already constitute the most extensive catalogue of organisms and genes related to the human microbiome yet published — and highlights some of the major questions that the project will tackle in the next few years.
Journal Article
Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
by
Cheng, Jill
,
Denoeud, France
,
Rosenzweig, Elizabeth R
in
Biological and medical sciences
,
Chromatin - genetics
,
Chromatin - metabolism
2007
We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.
Decoding the blueprint
The ENCODE project — standing for ENCyclopedia Of DNA Elements — has set out to identify all the functional elements in the human genome. With the genome sequence now established, the next challenge is to discover how the cell actually uses it as an instruction manual. The ENCODE consortium has completed the 'proof-of-principle' pilot phase of the project, an analysis of functional elements in a targeted 1% of the human genome. The results, published this week, suggest that most bases in the genome are found in primary transcripts, including non-protein-coding transcripts and those that overlap. Examination of transcriptional regulation has yielded new understanding about transcription start sites, and a more sophisticated view about chromatin structure. Integration of these data, in particular with respect to mammalian evolution, reveals new insights about how the information coded in the DNA blueprint is turned into functioning systems in the living cell.
The next step after sequencing a genome is to figure out how the cell actually uses it as an instruction manual. A large international consortium has examined 1% of the genome for what part is transcribed, where proteins are bound, what the chromatin structure looks like, and how the sequence compares to that of other organisms.
Journal Article
Initial sequencing and analysis of the human genome
2001
The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.
Journal Article
A user's guide to the human genome
by
Wolfsberg, Tyra G.
,
Guyer, Mark S.
,
Baxevanis, Andreas D.
in
DNA sequencing
,
Human genome
,
Methods
2003
Journal Article
The mutation rates of di-, tri- and tetranucleotide repeats in Drosophila melanogaster
1998
In a recent study, we reported that the combined average mutation rate of 10 di-, 6 tri-, and 8 tetranucleotide repeats in Drosophila melanogaster was 6.3 x 10(-6) mutations per locus per generation, a rate substantially below that of microsatellite repeat units in mammals studied to date (range = 10(-2)-10(-5) per locus per generation). To obtain a more precise estimate of mutation rate for dinucleotide repeat motifs alone, we assayed 39 new dinucleotide repeat microsatellite loci in the mutation accumulation lines from our earlier study. Our estimate of mutation rate for a total of 49 dinucleotide repeats is 9.3 x 10(-6) per locus per generation, only slightly higher than the estimate from our earlier study. We also estimated the relative difference in microsatellite mutation rate among di-, tri-, and tetranucleotide repeats in the genome of D. melanogaster using a method based on population variation, and we found that tri- and tetranucleotide repeats mutate at rates 6.4 and 8.4 times slower than that of dinucleotide repeats, respectively. The slower mutation rates of tri- and tetranucleotide repeats appear to be associated with a relatively short repeat unit length of these repeat motifs in the genome of D. melanogaster. A positive correlation between repeat unit length and allelic variation suggests that mutation rate increases as the repeat unit lengths of microsatellites increase.
Journal Article