Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
45
result(s) for
"Winfree, Seth"
Sort by:
The Bimodal Lifestyle of Intracellular Salmonella in Epithelial Cells: Replication in the Cytosol Obscures Defects in Vacuolar Replication
by
Steele-Mortimer, Olivia
,
Malik-Kale, Preeti
,
Winfree, Seth
in
Adaptation
,
Backup software
,
Bacteria
2012
Salmonella enterica serovar Typhimurium invades and proliferates within epithelial cells. Intracellular bacteria replicate within a membrane bound vacuole known as the Salmonella containing vacuole. However, this bacterium can also replicate efficiently in the cytosol of epithelial cells and net intracellular growth is a product of both vacuolar and cytosolic replication. Here we have used semi-quantitative single-cell analyses to investigate the contribution of each of these replicative niches to intracellular proliferation in cultured epithelial cells. We show that cytosolic replication can account for the majority of net replication even though it occurs in less than 20% of infected cells. Consequently, assays for net growth in a population of infected cells, for example by recovery of colony forming units, are not good indicators of vacuolar proliferation. We also show that the Salmonella Type III Secretion System 2, which is required for SCV biogenesis, is not required for cytosolic replication. Altogether this study illustrates the value of single cell analyses when studying intracellular pathogens.
Journal Article
Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal epithelia
by
Steele-Mortimer, Olivia
,
Vallance, Bruce A.
,
Winfree, Seth
in
Antibodies
,
Apoptosis
,
Bacteria
2010
Salmonella enterica is an intracellular bacterial pathogen that resides and proliferates within a membrane-bound vacuole in epithelial cells of the gut and gallbladder. Although essential to disease, how Salmonella escapes from its intracellular niche and spreads to secondary cells within the same host, or to a new host, is not known. Here, we demonstrate that a subpopulation of Salmonella hyperreplicating in the cytosol of epithelial cells serves as a reservoir for dissemination. These bacteria are transcriptionally distinct from intravacuolar Salmonella. They are induced for the invasion-associated type III secretion system and possess flagella; hence, they are primed for invasion. Epithelial cells laden with these cytosolic bacteria are extruded out of the monolayer, releasing invasion-primed and -competent Salmonella into the lumen. This extrusion mechanism is morphologically similar to the process of cell shedding required for turnover of the intestinal epithelium. In contrast to the homeostatic mechanism, however, bacterial-induced extrusion is accompanied by an inflammatory cell death characterized by caspase-1 activation and the apical release of IL-18, an important cytokine regulator of gut inflammation. Although epithelial extrusion is obviously beneficial to Salmonella for completion of its life cycle, it also provides a mechanistic explanation for the mucosal inflammation that is triggered during Salmonella infection of the gastrointestinal and biliary tracts.
Journal Article
A spatially anchored transcriptomic atlas of the human kidney papilla identifies significant immune injury in patients with stone disease
2023
Kidney stone disease causes significant morbidity and increases health care utilization. In this work, we decipher the cellular and molecular niche of the human renal papilla in patients with calcium oxalate (CaOx) stone disease and healthy subjects. In addition to identifying cell types important in papillary physiology, we characterize collecting duct cell subtypes and an undifferentiated epithelial cell type that was more prevalent in stone patients. Despite the focal nature of mineral deposition in nephrolithiasis, we uncover a global injury signature characterized by immune activation, oxidative stress and extracellular matrix remodeling. We also identify the association of MMP7 and MMP9 expression with stone disease and mineral deposition, respectively. MMP7 and MMP9 are significantly increased in the urine of patients with CaOx stone disease, and their levels correlate with disease activity. Our results define the spatial molecular landscape and specific pathways contributing to stone-mediated injury in the human papilla and identify associated urinary biomarkers.
Kidney stone disease causes significant morbidity and increases in health care utilization. Here, the authors define the spatial molecular landscape and specific pathways contributing to stone-mediated injury in the human renal papilla and identify associated urinary biomarkers.
Journal Article
NISNet3D: three-dimensional nuclear synthesis and instance segmentation for fluorescence microscopy images
2023
The primary step in tissue cytometry is the automated distinction of individual cells (segmentation). Since cell borders are seldom labeled, cells are generally segmented by their nuclei. While tools have been developed for segmenting nuclei in two dimensions, segmentation of nuclei in three-dimensional volumes remains a challenging task. The lack of effective methods for three-dimensional segmentation represents a bottleneck in the realization of the potential of tissue cytometry, particularly as methods of tissue clearing present the opportunity to characterize entire organs. Methods based on deep learning have shown enormous promise, but their implementation is hampered by the need for large amounts of manually annotated training data. In this paper, we describe 3D Nuclei Instance Segmentation Network (NISNet3D) that directly segments 3D volumes through the use of a modified 3D U-Net, 3D marker-controlled watershed transform, and a nuclei instance segmentation system for separating touching nuclei. NISNet3D is unique in that it provides accurate segmentation of even challenging image volumes using a network trained on large amounts of synthetic nuclei derived from relatively few annotated volumes, or on synthetic data obtained without annotated volumes. We present a quantitative comparison of results obtained from NISNet3D with results obtained from a variety of existing nuclei segmentation techniques. We also examine the performance of the methods when no ground truth is available and only synthetic volumes were used for training.
Journal Article
The orchestrated cellular and molecular responses of the kidney to endotoxin define a precise sepsis timeline
2021
Sepsis is a dynamic state that progresses at variable rates and has life-threatening consequences. Staging patients along the sepsis timeline requires a thorough knowledge of the evolution of cellular and molecular events at the tissue level. Here, we investigated the kidney, an organ central to the pathophysiology of sepsis. Single-cell RNA-sequencing in a murine endotoxemia model revealed the involvement of various cell populations to be temporally organized and highly orchestrated. Endothelial and stromal cells were the first responders. At later time points, epithelial cells upregulated immune-related pathways while concomitantly downregulating physiological functions such as solute homeostasis. Sixteen hours after endotoxin, there was global cell–cell communication failure and organ shutdown. Despite this apparent organ paralysis, upstream regulatory analysis showed significant activity in pathways involved in healing and recovery. This rigorous spatial and temporal definition of murine endotoxemia will uncover precise biomarkers and targets that can help stage and treat human sepsis.
Journal Article
Integration of spatial and single-cell transcriptomics localizes epithelial cell–immune cross-talk in kidney injury
by
Dunn, Kenneth W.
,
Kelly, Katherine J.
,
Ferreira, Ricardo Melo
in
Activating transcription factor 3
,
Acute Kidney Injury - immunology
,
Acute Kidney Injury - metabolism
2021
Single-cell sequencing studies have characterized the transcriptomic signature of cell types within the kidney. However, the spatial distribution of acute kidney injury (AKI) is regional and affects cells heterogeneously. We first optimized coordination of spatial transcriptomics and single-nuclear sequencing data sets, mapping 30 dominant cell types to a human nephrectomy. The predicted cell-type spots corresponded with the underlying histopathology. To study the implications of AKI on transcript expression, we then characterized the spatial transcriptomic signature of 2 murine AKI models: ischemia/reperfusion injury (IRI) and cecal ligation puncture (CLP). Localized regions of reduced overall expression were associated with injury pathways. Using single-cell sequencing, we deconvoluted the signature of each spatial transcriptomic spot, identifying patterns of colocalization between immune and epithelial cells. Neutrophils infiltrated the renal medulla in the ischemia model. Atf3 was identified as a chemotactic factor in S3 proximal tubules. In the CLP model, infiltrating macrophages dominated the outer cortical signature, and Mdk was identified as a corresponding chemotactic factor. The regional distribution of these immune cells was validated with multiplexed CO-Detection by indEXing (CODEX) immunofluorescence. Spatial transcriptomic sequencing complemented single-cell sequencing by uncovering mechanisms driving immune cell infiltration and detection of relevant cell subpopulations.
Journal Article
An intravenous pancreatic cancer therapeutic: Characterization of CRISPR/Cas9n-modified Clostridium novyi-Non Toxic
2023
Clostridium novyi has demonstrated selective efficacy against solid tumors largely due to the microenvironment contained within dense tumor cores. The core of a solid tumor is typically hypoxic, acidic, and necrotic—impeding the penetration of current therapeutics. C . novyi is attracted to the tumor microenvironment and once there, can both lyse and proliferate while simultaneously re-activating the suppressed immune system. C . novyi systemic toxicity is easily mitigated by knocking out the phage DNA plasmid encoded alpha toxin resulting in C . novyi -NT; but, after intravenous injection spores are quickly cleared by phagocytosis before accomplishing significant tumor localization. C . novyi -NT could be designed to accomplish intravenous delivery with the potential to target all solid tumors and their metastases in a single dose. This study characterizes CRISPR/Cas9 modified C . novyi- NT to insert the gene for RGD, a tumor targeting peptide, expressed within the promoter region of a spore coat protein. Expression of the RGD peptide on the outer spore coat of C . novyi- NT indicates an increased capacity for tumor localization of C . novyi upon intravenous introduction based on the natural binding of RGD with the α v β 3 integrin commonly overexpressed on the epithelial tissue surrounding a tumor, and lead to immune stimulation.
Journal Article
Elevated Cholesterol in the Coxiella burnetii Intracellular Niche Is Bacteriolytic
by
Mulye, Minal
,
Samanta, Dhritiman
,
Winfree, Seth
in
Acidification
,
Bacteriolysis - drug effects
,
Biosynthesis
2017
Coxiella burnetii is an intracellular bacterial pathogen and a significant cause of culture-negative endocarditis in the United States. Upon infection, the nascent Coxiella phagosome fuses with the host endocytic pathway to form a large lysosome-like vacuole called the parasitophorous vacuole (PV). The PV membrane is rich in sterols, and drugs perturbing host cell cholesterol homeostasis inhibit PV formation and bacterial growth. Using cholesterol supplementation of a cholesterol-free cell model system, we found smaller PVs and reduced Coxiella growth as cellular cholesterol concentration increased. Further, we observed in cells with cholesterol a significant number of nonfusogenic PVs that contained degraded bacteria, a phenotype not observed in cholesterol-free cells. Cholesterol had no effect on axenic Coxiella cultures, indicating that only intracellular bacteria are sensitive to cholesterol. Live-cell microscopy revealed that both plasma membrane-derived cholesterol and the exogenous cholesterol carrier protein low-density lipoprotein (LDL) traffic to the PV. To test the possibility that increasing PV cholesterol levels affects bacterial survival, infected cells were treated with U18666A, a drug that traps cholesterol in lysosomes and PVs. U18666A treatment led to PVs containing degraded bacteria and a significant loss in bacterial viability. The PV pH was significantly more acidic in cells with cholesterol or cells treated with U18666A, and the vacuolar ATPase inhibitor bafilomycin blocked cholesterol-induced PV acidification and bacterial death. Additionally, treatment of infected HeLa cells with several FDA-approved cholesterol-altering drugs led to a loss of bacterial viability, a phenotype also rescued by bafilomycin. Collectively, these data suggest that increasing PV cholesterol further acidifies the PV, leading to Coxiella death. IMPORTANCE The intracellular Gram-negative bacterium Coxiella burnetii is a significant cause of culture-negative infectious endocarditis, which can be fatal if untreated. The existing treatment strategy requires prolonged antibiotic treatment, with a 10-year mortality rate of 19% in treated patients. Therefore, new clinical therapies are needed and can be achieved by better understanding C. burnetii pathogenesis. Upon infection of host cells, C. burnetii grows within a specialized replication niche, the parasitophorous vacuole (PV). Recent data have linked cholesterol to intracellular C. burnetii growth and PV formation, leading us to further decipher the role of cholesterol during C. burnetii -host interaction. We observed that increasing PV cholesterol concentration leads to increased acidification of the PV and bacterial death. Further, treatment with FDA-approved drugs that alter host cholesterol homeostasis also killed C. burnetii through PV acidification. Our findings suggest that targeting host cholesterol metabolism might prove clinically efficacious in controlling C. burnetii infection. The intracellular Gram-negative bacterium Coxiella burnetii is a significant cause of culture-negative infectious endocarditis, which can be fatal if untreated. The existing treatment strategy requires prolonged antibiotic treatment, with a 10-year mortality rate of 19% in treated patients. Therefore, new clinical therapies are needed and can be achieved by better understanding C. burnetii pathogenesis. Upon infection of host cells, C. burnetii grows within a specialized replication niche, the parasitophorous vacuole (PV). Recent data have linked cholesterol to intracellular C. burnetii growth and PV formation, leading us to further decipher the role of cholesterol during C. burnetii -host interaction. We observed that increasing PV cholesterol concentration leads to increased acidification of the PV and bacterial death. Further, treatment with FDA-approved drugs that alter host cholesterol homeostasis also killed C. burnetii through PV acidification. Our findings suggest that targeting host cholesterol metabolism might prove clinically efficacious in controlling C. burnetii infection.
Journal Article
Macrophage-derived LTB4 promotes abscess formation and clearance of Staphylococcus aureus skin infection in mice
by
Serezani, C. Henrique
,
Winfree, Seth
,
Klopfenstein, Nathan
in
Abscess - genetics
,
Abscess - immunology
,
Abscess - microbiology
2018
The early events that shape the innate immune response to restrain pathogens during skin infections remain elusive. Methicillin-resistant Staphylococcus aureus (MRSA) infection engages phagocyte chemotaxis, abscess formation, and microbial clearance. Upon infection, neutrophils and monocytes find a gradient of chemoattractants that influence both phagocyte direction and microbial clearance. The bioactive lipid leukotriene B4 (LTB4) is quickly (seconds to minutes) produced by 5-lipoxygenase (5-LO) and signals through the G protein-coupled receptors LTB4R1 (BLT1) or BLT2 in phagocytes and structural cells. Although it is known that LTB4 enhances antimicrobial effector functions in vitro, whether prompt LTB4 production is required for bacterial clearance and development of an inflammatory milieu necessary for abscess formation to restrain pathogen dissemination is unknown. We found that LTB4 is produced in areas near the abscess and BLT1 deficient mice are unable to form an abscess, elicit neutrophil chemotaxis, generation of neutrophil and monocyte chemokines, as well as reactive oxygen species-dependent bacterial clearance. We also found that an ointment containing LTB4 synergizes with antibiotics to eliminate MRSA potently. Here, we uncovered a heretofore unknown role of macrophage-derived LTB4 in orchestrating the chemoattractant gradient required for abscess formation, while amplifying antimicrobial effector functions.
Journal Article
Activation of Akt by the Bacterial Inositol Phosphatase, SopB, is Wortmannin Insensitive
by
Jolly, Carrie
,
Steele-Mortimer, Olivia
,
Ireland, Robin
in
1-Phosphatidylinositol 3-kinase
,
Activation
,
AKT protein
2011
Salmonella enterica uses effector proteins translocated by a Type III Secretion System to invade epithelial cells. One of the invasion-associated effectors, SopB, is an inositol phosphatase that mediates sustained activation of the pro-survival kinase Akt in infected cells. Canonical activation of Akt involves membrane translocation and phosphorylation and is dependent on phosphatidyl inositide 3 kinase (PI3K). Here we have investigated these two distinct processes in Salmonella infected HeLa cells. Firstly, we found that SopB-dependent membrane translocation and phosphorylation of Akt are insensitive to the PI3K inhibitor wortmannin. Similarly, depletion of the PI3K regulatory subunits p85α and p85ß by RNAi had no inhibitory effect on SopB-dependent Akt phosphorylation. Nevertheless, SopB-dependent phosphorylation does depend on the Akt kinases, PDK1 and rictor-mTOR. Membrane translocation assays revealed a dependence on SopB for Akt recruitment to Salmonella ruffles and suggest that this is mediated by phosphoinositide (3,4) P(2) rather than phosphoinositide (3,4,5) P(3). Altogether these data demonstrate that Salmonella activates Akt via a wortmannin insensitive mechanism that is likely a class I PI3K-independent process that incorporates some essential elements of the canonical pathway.
Journal Article