Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
2,793 result(s) for "Wright, John J."
Sort by:
Batman
\"In these moody 1990s tales, Batman emerges from the shadows to battle corruption in Gotham City, and face foes including Killer Croc, The Scarecrow, Mr. Freeze, Two-Face and more. These tales by the classic Batman creative team of writer Doug Moench and artist Kelley Jones include guest-appearances by Nightwing, Robin, Deadman, and Swamp Thing. Collects Batman #515-525, 527-532, and 535-536\"-- Provided by publisher.
Cryo-EM structures define ubiquinone-10 binding to mitochondrial complex I and conformational transitions accompanying Q-site occupancy
Mitochondrial complex I is a central metabolic enzyme that uses the reducing potential of NADH to reduce ubiquinone-10 (Q 10 ) and drive four protons across the inner mitochondrial membrane, powering oxidative phosphorylation. Although many complex I structures are now available, the mechanisms of Q 10 reduction and energy transduction remain controversial. Here, we reconstitute mammalian complex I into phospholipid nanodiscs with exogenous Q 10 . Using cryo-EM, we reveal a Q 10 molecule occupying the full length of the Q-binding site in the ‘active’ (ready-to-go) resting state together with a matching substrate-free structure, and apply molecular dynamics simulations to propose how the charge states of key residues influence the Q 10 binding pose. By comparing ligand-bound and ligand-free forms of the ‘deactive’ resting state (that require reactivating to catalyse), we begin to define how substrate binding restructures the deactive Q-binding site, providing insights into its physiological and mechanistic relevance. Using cryo-EM, Chung et al . investigate conformational states of mammalian respiratory complex I to reveal an ubiquinone-10 molecule occupying the full length of the Q-binding channel. Molecular dynamics simulations suggest how the charge states of key residues influence the substrate binding pose.
Ipilimumab and a poxviral vaccine targeting prostate-specific antigen in metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial
Therapeutic cancer vaccines have shown activity in metastatic castration-resistant prostate cancer (mCRPC), and methods are being assessed to enhance their efficacy. Ipilimumab is an antagonistic monoclonal antibody that binds cytotoxic T-lymphocyte-associated protein 4, an immunomodulatory molecule expressed by activated T cells, and to CD80 on antigen-presenting cells. We aimed to assess the safety and tolerability of ipilimumab in combination with a poxviral-based vaccine targeting prostate-specific antigen (PSA) and containing transgenes for T-cell co-stimulatory molecule expression, including CD80. We did a phase 1 dose-escalation trial, with a subsequent expansion phase, to assess the safety and tolerability of escalating doses of ipilimumab in combination with a fixed dose of the PSA-Tricom vaccine. Patients with mCRPC received 2×108 plaque-forming units of recombinant vaccinia PSA-Tricom subcutaneously on day 1 of cycle 1, with subsequent monthly boosts of 1×109 plaque-forming units, starting on day 15. Intravenous ipilimumab was given monthly starting at day 15, in doses of 1, 3, 5, and 10 mg/kg. Our primary goal was to assess the safety of the combination. This study is registered with ClinicalTrials.gov, number NCT00113984. We completed enrolment with 30 patients (24 of whom had not been previously treated with chemotherapy) and we did not identify any dose-limiting toxic effects. Grade 1 and 2 vaccination-site reactions were the most common toxic effects: three of 30 patients had grade 1 reactions and 26 had grade 2 reactions. 21 patients had grade 2 or greater immune-related adverse events. Grade 3 or 4 immune-related adverse events included diarrhoea or colitis in four patients and grade 3 rash (two patients), grade 3 raised aminotransferases (two patients), grade 3 endocrine immune-related adverse events (two patients), and grade 4 neutropenia (one patient). Only one of the six patients previously treated with chemotherapy had a PSA decline from baseline. Of the 24 patients who were chemotherapy-naive, 14 (58%) had PSA declines from baseline, of which six were greater than 50%. The use of a vaccine targeting PSA that also enhances co-stimulation of the immune system did not seem to exacerbate the immune-related adverse events associated with ipilimumab. Randomised trials are needed to further assess clinical outcomes of the combination of ipilimumab and vaccine in mCRPC. US National Institutes of Health.
Structure of inhibitor-bound mammalian complex I
Respiratory complex I (NADH:ubiquinone oxidoreductase) captures the free energy from oxidising NADH and reducing ubiquinone to drive protons across the mitochondrial inner membrane and power oxidative phosphorylation. Recent cryo-EM analyses have produced near-complete models of the mammalian complex, but leave the molecular principles of its long-range energy coupling mechanism open to debate. Here, we describe the 3.0-Å resolution cryo-EM structure of complex I from mouse heart mitochondria with a substrate-like inhibitor, piericidin A, bound in the ubiquinone-binding active site. We combine our structural analyses with both functional and computational studies to demonstrate competitive inhibitor binding poses and provide evidence that two inhibitor molecules bind end-to-end in the long substrate binding channel. Our findings reveal information about the mechanisms of inhibition and substrate reduction that are central for understanding the principles of energy transduction in mammalian complex I. The respiratory complex I (NADH:ubiquinone oxidoreductase) is a large redox-driven proton pump that initiates respiration in mitochondria. Here, the authors present the 3.0 Å cryo-EM structure of complex I from mouse heart mitochondria with the ubiquinone-analogue inhibitor piericidin A bound in the active site and with kinetic measurements and MD simulations they further show that this inhibitor acts competitively against the native ubiquinone-10 substrate.
Paracoccus denitrificans: a genetically tractable model system for studying respiratory complex I
Mitochondrial complex I (NADH:ubiquinone oxidoreductase) is a crucial metabolic enzyme that couples the free energy released from NADH oxidation and ubiquinone reduction to the translocation of four protons across the inner mitochondrial membrane, creating the proton motive force for ATP synthesis. The mechanism by which the energy is captured, and the mechanism and pathways of proton pumping, remain elusive despite recent advances in structural knowledge. Progress has been limited by a lack of model systems able to combine functional and structural analyses with targeted mutagenic interrogation throughout the entire complex. Here, we develop and present the α-proteobacterium Paracoccus denitrificans as a suitable bacterial model system for mitochondrial complex I. First, we develop a robust purification protocol to isolate highly active complex I by introducing a His 6 -tag on the Nqo5 subunit. Then, we optimize the reconstitution of the enzyme into liposomes, demonstrating its proton pumping activity. Finally, we develop a strain of P. denitrificans that is amenable to complex I mutagenesis and create a catalytically inactive variant of the enzyme. Our model provides new opportunities to disentangle the mechanism of complex I by combining mutagenesis in every subunit with established interrogative biophysical measurements on both the soluble and membrane bound enzymes.
Cabozantinib in patients with platinum-refractory metastatic urothelial carcinoma: an open-label, single-centre, phase 2 trial
Cabozantinib is a multikinase inhibitor of MET, VEGFR, AXL, and RET, which also has an effect on the tumour immune microenvironment by decreasing regulatory T cells and myeloid-derived suppressor cells. In this study, we examined the activity of cabozantinib in patients with metastatic platinum-refractory urothelial carcinoma. This study was an open-label, single-arm, three-cohort phase 2 trial done at the National Cancer Institute (Bethesda, MD, USA). Eligible patients were 18 years or older, had histologically confirmed urothelial carcinoma or rare genitourinary tract histologies, Karnofsky performance scale index of 60% or higher, and documented disease progression after at least one previous line of platinum-based chemotherapy (platinum-refractory). Cohort one included patients with metastatic urothelial carcinoma with measurable disease as defined by Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1. Two additional cohorts that enrolled in parallel (patients with bone-only urothelial carcinoma metastases and patients with rare histologies of the genitourinary tract) were exploratory. Patients received cabozantinib 60 mg orally once daily in 28-day cycles until disease progression or unacceptable toxicity. The primary endpoint was investigator-assessed objective response rate by RECIST in cohort one. Response was assessed in all patients who met the eligibility criteria and who received at least 8 weeks of therapy. All patients who received at least one dose of cabozantinib were included in the safety analysis. This completed study is registered with ClinicalTrials.gov, NCT01688999. Between Sept 28, 2012, and Oct, 20, 2015, 68 patients were enrolled on the study (49 in cohort one, six in cohort two, and 13 in cohort three). All patients received at least one dose of cabozantinib. The median follow-up was 61·2 months (IQR 53·8–70·0) for the 57 patients evaluable for response. In the 42 evaluable patients in cohort one, there was one complete response and seven partial responses (objective response rate 19%, 95% CI 9–34). The most common grade 3–4 adverse events were fatigue (six [9%] patients), hypertension (five [7%]), proteinuria (four [6%]), and hypophosphataemia (four [6%]). There were no treatment-related deaths. Cabozantinib has single-agent clinical activity in patients with heavily pretreated, platinum-refractory metastatic urothelial carcinoma with measurable disease and bone metastases and is generally well tolerated. Cabozantinib has innate and adaptive immunomodulatory properties providing a rationale for combining cabozantinib with immunotherapeutic strategies. National Cancer Institute Intramural Program and the Cancer Therapy Evaluation Program.
Functional basis of electron transport within photosynthetic complex I
Photosynthesis and respiration rely upon a proton gradient to produce ATP. In photosynthesis, the Respiratory Complex I homologue, Photosynthetic Complex I (PS-CI) is proposed to couple ferredoxin oxidation and plastoquinone reduction to proton pumping across thylakoid membranes. However, little is known about the PS-CI molecular mechanism and attempts to understand its function have previously been frustrated by its large size and high lability. Here, we overcome these challenges by pushing the limits in sample size and spectroscopic sensitivity, to determine arguably the most important property of any electron transport enzyme – the reduction potentials of its cofactors, in this case the iron-sulphur clusters of PS-CI (N0, N1 and N2), and unambiguously assign them to the structure using double electron-electron resonance. We have thus determined the bioenergetics of the electron transfer relay and provide insight into the mechanism of PS-CI, laying the foundations for understanding of how this important bioenergetic complex functions. Photosynthetic Complex I (PS-CI) is proposed to couple ferredoxin oxidation and plastoquinone reduction to proton pumping across thylakoid membranes. Here the authors determine the reduction potentials of the iron-sulphur clusters of PS-CI and thus the bioenergetics of the electron transfer relay.
Using a chimeric respiratory chain and EPR spectroscopy to determine the origin of semiquinone species previously assigned to mitochondrial complex I
Background For decades, semiquinone intermediates have been suggested to play an essential role in catalysis by one of the most enigmatic proton-pumping enzymes, respiratory complex I, and different mechanisms have been proposed on their basis. However, the difficulty in investigating complex I semiquinones, due to the many different enzymes embedded in the inner mitochondrial membrane, has resulted in an ambiguous picture and no consensus. Results In this paper, we re-examine the highly debated origin of semiquinone species in mitochondrial membranes using a novel approach. Our combination of a semi-artificial chimeric respiratory chain with pulse EPR spectroscopy (HYSCORE) has enabled us to conclude, unambiguously and for the first time, that the majority of the semiquinones observed in mitochondrial membranes originate from complex III. We also identify a minor contribution from complex II. Conclusions We are unable to attribute any semiquinone signals unambiguously to complex I and, reconciling our observations with much of the previous literature, conclude that they are likely to have been misattributed to it. We note that, for this earlier work, the tools we have relied on here to deconvolute overlapping EPR signals were not available. Proposals for the mechanism of complex I based on the EPR signals of semiquinone species observed in mitochondrial membranes should thus be treated with caution until future work has succeeded in isolating any complex I semiquinone EPR spectroscopic signatures present.
A Phase II Trial of Sorafenib in Metastatic Melanoma with Tissue Correlates
Sorafenib monotherapy in patients with metastatic melanoma was explored in this multi-institutional phase II study. In correlative studies the impact of sorafenib on cyclin D1 and Ki67 was assessed. Thirty-six patients treatment-naïve advanced melanoma patients received sorafenib 400 mg p.o. twice daily continuously. Tumor BRAF(V600E) mutational status was determined by routine DNA sequencing and mutation-specific PCR (MSPCR). Immunohistochemistry (IHC) staining for cyclin D1 and Ki67 was performed on available pre- and post treatment tumor samples. The main toxicities included diarrhea, alopecia, rash, mucositis, nausea, hand-foot syndrome, and intestinal perforation. One patient had a RECIST partial response (PR) lasting 175 days. Three patients experienced stable disease (SD) with a mean duration of 37 weeks. Routine BRAF(V600E) sequencing yielded 27 wild-type (wt) and 6 mutant tumors, whereas MSPCR identified 12 wt and 18 mutant tumors. No correlation was seen between BRAF(V600E) mutational status and clinical activity. No significant changes in expression of cyclin D1 or Ki67 with sorafenib treatment were demonstrable in the 15 patients with pre-and post-treatment tumor samples. Sorafenib monotherapy has limited activity in advanced melanoma patients. BRAF(V600E) mutational status of the tumor was not associated with clinical activity and no significant effect of sorafenib on cyclin D1 or Ki67 was seen, suggesting that sorafenib is not an effective BRAF inhibitor or that additional signaling pathways are equally important in the patients who benefit from sorafenib. Clinical Trials.gov NCT00119249.
Sorafenib for Advanced and Refractory Desmoid Tumors
Desmoid tumors are rare and difficult to treat. This trial of daily sorafenib versus placebo documented an objective response rate of 33% with sorafenib and 20% with placebo. The 2-year progression-free survival rate was 81% with sorafenib and 36% with placebo.