Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
5,686 result(s) for "Wu, Chuan"
Sort by:
Research on flexural mechanical properties and mechanism of green ecological coir fiber foamed concrete (CFFC)
To explore the effect and mechanism of coir fiber on the performance of foamed concrete, the flexural performance test, pore characteristics and microstructure test of coir fiber foamed concrete with different content were carried out. First, Image-Pro Plus (image processing software) was used to study the pore morphology, porosity, average pore diameter, and pore roundness of CFFC with various fibers dosage (0, 0.5%, 1.0%, 1.5%, 2.0%, 2.5%) by binarization processing method. Then, a total of eighteen specimens, divided into six groups, were used to investigate the effect of CF dosage on flexural strength, toughness, energy absorption, and failure patterns of FC through a three-point flexural test. Furthermore, the microscopic properties of coir fiber foamed concrete (CFFC) were observed by scanning electron microscope (SEM) and energy dispersive X-ray detector (XRD) to explain the influence mechanism of CF on FC flexural properties. According to the research, CF can affect the pore characteristics of CFFC and improve its flexural performance. When CF content is 1.5–2.0%, the porosity, diameter and roundness of CFFC have lower values of 68.6%, 1.96 mm and 1.29. After the fiber dosage reaches 1.5%, the CFFC failure mode changed to plastic damage, the flexural strength increased from 0.33 to 0.73 MPa, and the toughness energy absorption value was increased from 0.05 to 1.4 J. The optimum dosage of coir fiber is 2.0% for improving the flexural mechanical properties of FC. CF affects the process of hydration reaction of CFFC, but does not change the type of hydration product. However, the flexural performance of FC would decrease with excessive dosage of CF (> 2.0%) due to accelerating the formation of Ca(OH) 2 . CFFC can solve problems such as brittleness and easy cracking existing in traditional foamed concrete, and it can be used in the field of pavement engineering, foundation backfill and lightweight wall structure with CF dosage of 15–2.0%.
Host selection shapes crop microbiome assembly and network complexity
• Plant microbiomes are essential to host health and productivity but the ecological processes that govern crop microbiome assembly are not fully known. • Here we examined bacterial communities across 684 samples from soils (rhizosphere and bulk soil) and multiple compartment niches (rhizoplane, root endosphere, phylloplane, and leaf endosphere) in maize (Zea mays)-wheat (Triticum aestivum)/barley (Hordeum vulgare) rotation system under different fertilization practices at two contrasting sites. • Our results demonstrate that microbiome assembly along the soil-plant continuum is shaped predominantly by compartment niche and host species rather than by site or fertilization practice. From soils to epiphytes to endophytes, host selection pressure sequentially increased and bacterial diversity and network complexity consequently reduced, with the strongest host effect in leaf endosphere. Source tracking indicates that crop microbiome is mainly derived from soils and gradually enriched and filtered at different plant compartment niches. Moreover, crop microbiomes were dominated by a few dominant taxa (c. 0.5% of bacterial phylotypes), with bacilli identified as the important biomarker taxa for wheat and barley and Methylobacteriaceae for maize. • Our work provides comprehensive empirical evidence on host selection, potential sources and enrichment processes for crop microbiome assembly, and has important implications for future crop management and manipulation of crop microbiome for sustainable agriculture.
Polyanion‐Type Electrode Materials for Sodium‐Ion Batteries
Sodium‐ion batteries, representative members of the post‐lithium‐battery club, are very attractive and promising for large‐scale energy storage applications. The increasing technological improvements in sodium‐ion batteries (Na‐ion batteries) are being driven by the demand for Na‐based electrode materials that are resource‐abundant, cost‐effective, and long lasting. Polyanion‐type compounds are among the most promising electrode materials for Na‐ion batteries due to their stability, safety, and suitable operating voltages. The most representative polyanion‐type electrode materials are Na3V2(PO4)3 and NaTi2(PO4)3 for Na‐based cathode and anode materials, respectively. Both show superior electrochemical properties and attractive prospects in terms of their development and application in Na‐ion batteries. Carbonophosphate Na3MnCO3PO4 and amorphous FePO4 have also recently emerged and are contributing to further developing the research scope of polyanion‐type Na‐ion batteries. However, the typical low conductivity and relatively low capacity performance of such materials still restrict their development. This paper presents a brief review of the research progress of polyanion‐type electrode materials for Na‐ion batteries, summarizing recent accomplishments, highlighting emerging strategies, and discussing the remaining challenges of such systems. Polyanion‐type electrode materials, combining the advantages of stability, safety and suitable operating voltages, are promising electrode candidates for sodium‐ion batteries aiming at large‐scale electrochemical energy storage. This article summarizes recent research into different types of these materials. The existing challenges and prospective strategies are also proposed and discussed.
Bipartite Fluctuations of Critical Fermi Surfaces
Fluctuations of conserved quantities within a subsystem are nonlocal observables that provide unique insights into quantum many-body systems. In this paper, we study bipartite charge (and spin) fluctuations across interaction-driven “metal-insulator transitions” out of Landau Fermi liquids. The “charge insulators” include a class of non-Fermi-liquid states of fractionalized degrees of freedom, such as compressible composite Fermi liquids (for spinless electrons) and incompressible spin-liquid Mott insulators (for spin- 1 / 2 electrons). We find that charge fluctuations F exhibit distinct leading-order scalings across the transition: F ∼ L log ( L ) in Landau Fermi liquids and F ∼ L in charge insulators, where L is the linear size of the subsystem. In composite Fermi liquids, under certain conditions, we also identify a universal constant term − f ( θ ) | σ x y | / ( 2 π ) when the subsystem geometry contains a sharp corner, where f ( θ ) denotes a function of the corner angle and σ x y is the Hall conductivity. At the critical point, provided the transition is continuous, the leading scaling F ∼ L is accompanied by a subleading universal corner contribution − log ( L ) f ( θ ) C ρ / 2 with the same angle dependence f ( θ ) , and the universal coefficient C ρ is directly related to the predicted universal jumps in longitudinal and Hall resistivities. These results establish fluctuation-transport relations, paving the way for numerical and experimental studies of unconventional quantum criticalities in metals.
Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery
Aluminum is a naturally abundant, trivalent charge carrier with high theoretical specific capacity and volumetric energy density, rendering aluminum-ion batteries a technology of choice for future large-scale energy storage. However, the frequent collapse of the host structure of the cathode materials and sluggish kinetics of aluminum ion diffusion have thus far hampered the realization of practical battery devices. Here, we synthesize Al x MnO 2 · n H 2 O by an in-situ electrochemical transformation reaction to be used as a cathode material for an aluminum-ion battery with a configuration of Al/Al(OTF) 3 -H 2 O/Al x MnO 2 · n H 2 O. This cell is not only based on aqueous electrolyte chemistry but also delivers a high specific capacity of 467 mAh g −1 and a record high energy density of 481 Wh kg −1 . The high safety of aqueous electrolyte, facile cell assembly and the low cost of materials suggest that this aqueous aluminum-ion battery holds promise for large-scale energy applications. The instability of the host structure of cathode materials and sluggish aluminium ion diffusion are the major challenges facing the Al-ion battery. Here the authors show Al x MnO 2 · n H 2 O as a cathode that allows for reversible Al 3+ (de)intercalation in an aqueous electrolyte and impressive electrochemical performance for a battery device.
Ionic Liquid-Based Electrolytes for Aluminum/Magnesium/Sodium-Ion Batteries
Developing post-lithium-ion battery technology featured with high raw material abundance and low cost is extremely important for the large-scale energy storage applications, especially for the metal-based battery systems such as aluminum, sodium, and magnesium ion batteries. However, their developments are still in early stages, and one of the major challenges is to explore a safe and reliable electrolyte. An ionic liquid-based electrolyte is attractive and promising for developing safe and nonflammable devices with wide temperature ranges owing to their several unique properties such as ultralow volatility, high ionic conductivity, good thermal stability, low flammability, a wide electrochemical window, and tunable polarity and basicity/acidity. In this review, the recent emerging limitations and strategies of ionic liquid-based electrolytes in the above battery systems are summarized. In particular, for aluminum-ion batteries, the interfacial reaction between ionic liquid-based electrolytes and the electrode, the mechanism of aluminum storage, and the optimization of electrolyte composition are fully discussed. Moreover, the strategies to solve the problems of electrolyte corrosion and battery system side reactions are also highlighted. Finally, a general conclusion and a perspective focusing on the current development limitations and directions of ionic liquid-based electrolytes are proposed along with an outlook. In order to develop novel high-performance ionic liquid electrolytes, we need in-depth understanding and research on their fundamentals, paving the way for designing next-generation products.
TRIM52 knockdown inhibits proliferation, inflammatory responses and oxidative stress in IL‐1β‐induced synovial fibroblasts to alleviate temporomandibular joint osteoarthritis
To explore the mechanism of tripartite motif 52 (TRIM52) in the progression of temporomandibular joint osteoarthritis (TMJOA). Gene and protein expression were tested by quantitative real‐time polymerase chain reaction and western blot, respectively. The levels of pro‐inflammatory cytokines and oxidative stress factors were evaluated using enzyme‐linked immunosorbent assay and biochemical kit, respectively. Cell counting kit‐8 and 5‐ethynyl‐2′‐deoxyuridine assays were carried out to assess cell proliferation. Immunofluorescence was used to detect the expression of CD68 and Vimentin in primary synovial fibroblasts (SFs). Haematoxylin and eosin staining and Safranin O/Fast green were used to evaluate the pathological damage of synovial and cartilage tissue in rats. TRIM52 was upregulated in the synovial tissue and SFs in patients with TMJOA. Interleukin (IL)‐1β treatment upregulated TRIM52 expression in TMJOA SFs and normal SF (NSF), promoting cell proliferation, inflammatory response and oxidative stress in NSF, SFs. Silence of TRIM52 relieved the cell proliferation, inflammatory response and oxidative stress induced by IL‐1β in SFs, while overexpression of TRIM52 enhanced IL‐1β induction. Meanwhile, IL‐1β induction activated toll‐like receptor 4 (TLR4)/nuclear factor (NF)‐κB pathway, which was augmented by upregulation of TRIM52 in NSF, and was attenuated by TRIM52 knockdown in SFs. Besides, pyrrolidinedithiocarbamic acid ameliorated IL‐1β‐induced proliferation and inflammatory response by inhibiting TLR4/NF‐κB signalling. Meanwhile, TRIM52 knockdown inhibited cell proliferation, oxidative stress and inflammatory response in IL‐1β‐induced SFs through downregulation of TLR4. TRIM52 promoted cell proliferation, inflammatory response, and oxidative stress in IL‐1β‐induced SFs. The above functions were mediated by the activation of TLR4/NF‐ κB signal pathway.
Digital Gene Expression Analysis Based on Integrated De Novo Transcriptome Assembly of Sweet Potato Ipomoea batatas (L.) Lam.
Sweet potato (Ipomoea batatas L. [Lam.]) ranks among the top six most important food crops in the world. It is widely grown throughout the world with high and stable yield, strong adaptability, rich nutrient content, and multiple uses. However, little is known about the molecular biology of this important non-model organism due to lack of genomic resources. Hence, studies based on high-throughput sequencing technologies are needed to get a comprehensive and integrated genomic resource and better understanding of gene expression patterns in different tissues and at various developmental stages. Illumina paired-end (PE) RNA-Sequencing was performed, and generated 48.7 million of 75 bp PE reads. These reads were de novo assembled into 128,052 transcripts (≥ 100 bp), which correspond to 41.1 million base pairs, by using a combined assembly strategy. Transcripts were annotated by Blast2GO and 51,763 transcripts got BLASTX hits, in which 39,677 transcripts have GO terms and 14,117 have ECs that are associated with 147 KEGG pathways. Furthermore, transcriptome differences of seven tissues were analyzed by using Illumina digital gene expression (DGE) tag profiling and numerous differentially and specifically expressed transcripts were identified. Moreover, the expression characteristics of genes involved in viral genomes, starch metabolism and potential stress tolerance and insect resistance were also identified. The combined de novo transcriptome assembly strategy can be applied to other organisms whose reference genomes are not available. The data provided here represent the most comprehensive and integrated genomic resources for cloning and identifying genes of interest in sweet potato. Characterization of sweet potato transcriptome provides an effective tool for better understanding the molecular mechanisms of cellular processes including development of leaves and storage roots, tissue-specific gene expression, potential biotic and abiotic stress response in sweet potato.
Research on the Potential of Spherical Triboelectric Nanogenerator for Collecting Vibration Energy and Measuring Vibration
The traditional downhole drilling vibration measurement methods which use cable or battery as power supplies increase the drilling costs and reduce the drilling efficiency. This paper proposes a spherical triboelectric nanogenerator, which shows the potential to collect the downhole vibration energy and measure the vibration frequency in a self-powered model. The power generation tests show that the output signal amplitude of the spherical triboelectric nanogenerator increases as the vibration frequency increases, and it can reach a maximum output voltage of 70 V, a maximum current of 3.3 × 10−5 A, and a maximum power of 10.9 × 10−9 W at 8 Hz when a 10-ohm resistor is connected. Therefore, if the power generation is stored for a certain period of time when numbers of the spherical triboelectric nanogenerators are connected in parallel, it may provide intermittent power for the low-power downhole measurement instruments. In addition, the sensing tests show that the measurement range is 0 to 8 Hz, the test error is less than 2%, the applicable working environment temperature is below 100 degrees Celsius, and the installation distance between the spherical triboelectric nanogenerator and the vibration source should be less than the critical value of 150 cm because the output signal amplitude is inversely proportional to the distance.
Polarized three-photon-pumped laser in a single MOF microcrystal
Higher order multiphoton-pumped polarized lasers have fundamental technological importance. Although they can be used to in vivo imaging, their application has yet to be realized. Here we show the first polarized three-photon-pumped (3PP) microcavity laser in a single host–guest composite metal–organic framework (MOF) crystal, via a controllable in situ self-assembly strategy. The highly oriented assembly of dye molecules within the MOF provides an opportunity to achieve 3PP lasing with a low lasing threshold and a very high-quality factor on excitation. Furthermore, the 3PP lasing generated from composite MOF is perfectly polarized. These findings may eventually open up a new route to the exploitation of multiphoton-pumped solid-state laser in single MOF microcrystal (or nanocrystal) for future optoelectronic and biomedical applications. Higher-order multi-photon pumped polarized lasers promise application in future optoelectronic and biomedical applications. Here, the authors demonstrate a polarized three-photon pumped (3PP) microcavity laser in a single host-guest composite MOF crystal via a controllable in situ self-assembly strategy.