Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
4,741 result(s) for "Wu, X. F."
Sort by:
A magnetar-powered X-ray transient as the aftermath of a binary neutron-star merger
Mergers of neutron stars are known to be associated with short γ-ray bursts 1 – 4 . If the neutron-star equation of state is sufficiently stiff (that is, the pressure increases sharply as the density increases), at least some such mergers will leave behind a supramassive or even a stable neutron star that spins rapidly with a strong magnetic field 5 – 8 (that is, a magnetar). Such a magnetar signature may have been observed in the form of the X-ray plateau that follows up to half of observed short γ-ray bursts 9 , 10 . However, it has been expected that some X-ray transients powered by binary neutron-star mergers may not be associated with a short γ-ray burst 11 , 12 . A fast X-ray transient (CDF-S XT1) was recently found to be associated with a faint host galaxy, the redshift of which is unknown 13 . Its X-ray and host-galaxy properties allow several possible explanations including a short γ-ray burst seen off-axis, a low-luminosity γ-ray burst at high redshift, or a tidal disruption event involving an intermediate-mass black hole and a white dwarf 13 . Here we report a second X-ray transient, CDF-S XT2, that is associated with a galaxy at redshift z  = 0.738 (ref. 14 ). The measured light curve is fully consistent with the X-ray transient being powered by a millisecond magnetar. More intriguingly, CDF-S XT2 lies in the outskirts of its star-forming host galaxy with a moderate offset from the galaxy centre, as short γ-ray bursts often do 15 , 16 . The estimated event-rate density of similar X-ray transients, when corrected to the local value, is consistent with the event-rate density of binary neutron-star mergers that is robustly inferred from the detection of the gravitational-wave event GW170817. Observations of an X-ray transient associated with a galaxy at redshift 0.738 suggest that the X-ray transient is powered by a millisecond magnetar and that it is the remnant of a merger between two neutron stars.
A peculiar low-luminosity short gamma-ray burst from a double neutron star merger progenitor
Double neutron star (DNS) merger events are promising candidates of short gamma-ray burst (sGRB) progenitors as well as high-frequency gravitational wave (GW) emitters. On August 17, 2017, such a coinciding event was detected by both the LIGO-Virgo gravitational wave detector network as GW170817 and Gamma-Ray Monitor on board NASA’s Fermi Space Telescope as GRB 170817A. Here, we show that the fluence and spectral peak energy of this sGRB fall into the lower portion of the distributions of known sGRBs. Its peak isotropic luminosity is abnormally low. The estimated event rate density above this luminosity is at least 19 0 - 160 + 440  Gpc −3  yr −1 , which is close to but still below the DNS merger event rate density. This event likely originates from a structured jet viewed from a large viewing angle. There are similar faint soft GRBs in the Fermi archival data, a small fraction of which might belong to this new population of nearby, low-luminosity sGRBs. A short-duration gamma-ray burst was detected along with a double neutron start merger gravitational wave by LIGO-Virgo on August 17th 2017. Here, the authors show that the fluence and spectral peak energy of this event fall into the lower portion of the distribution of known short-duration gamma-ray bursts.
piRNA-823 contributes to tumorigenesis by regulating de novo DNA methylation and angiogenesis in multiple myeloma
Aberrant DNA hypermethylation contributes to myelomagenesis by silencing tumor-suppressor genes. Recently, a few reports have suggested that a novel class of small non-coding RNAs, called Piwi-interacting RNAs (piRNAs), may be involved in the epigenetic regulation of cancer. In this study, for the first time we provided evidence that the expression of piRNA-823 was upregulated in multiple myeloma (MM) patients and cell lines, and positively correlated with clinical stage. Silencing piRNA-823 in MM cells induced deregulation of cell cycle regulators and apoptosis-related proteins expression, accompanied by inhibition of tumorigenicity in vitro and in vivo . Moreover, piRNA-823 was directly relevant to de novo DNA methyltransferases, DNMT3A and 3B, in primary CD138 + MM cells. The inhibited expression of piRNA-823 in MM cells resulted in marked reduction of DNMT3A and 3B at both mRNA and protein levels, which in turn led to decrease in global DNA methylation and reexpression of methylation-silenced tumor suppressor, p16 INK4A . In addition, piRNA-823 abrogation in MM cells induced reduction of vascular endothelial growth factor secretion, with consequent decreased proangiogenic activity. Altogether, these data support an oncogenic role of piRNA-823 in the biology of MM, providing a rational for the development of piRNA-targeted therapeutic strategies in MM.
X-ray Flares from Postmerger Millisecond Pulsars
Recent observations support the suggestion that short-duration gamma-ray bursts are produced by compact star mergers. The x-ray flares discovered in two short gamma-ray bursts last much longer than the previously proposed postmerger energy-release time scales. Here, we show that they can be produced by differentially rotating, millisecond pulsars after the mergers of binary neutron stars. The differential rotation leads to windup of interior poloidal magnetic fields and the resulting toroidal fields are strong enough to float up and break through the stellar surface. Magnetic reconnection-driven explosive events then occur, leading to multiple x-ray flares minutes after the original gamma-ray burst.
A bright burst from FRB 20200120E in a globular cluster of the nearby galaxy M81
Fast radio bursts (FRBs) are immensely energetic millisecond-duration radio pulses. Observations indicate that nearby FRBs can be produced by old stellar populations, as suggested by the localization of the repeating source FRB 20200120E in a globular cluster of M81. Nevertheless, the burst energies of FRB 20200120E are significantly smaller than those of other cosmological FRBs. Here, we report the detection of a bright burst from FRB 20200120E in 1.1 – 1.7 GHz, with a fluence of approximately 30 Jy ms, which is more than 42 times larger than the previously detected bursts near 1.4 GHz frequency. It reaches one-third of the energy of the weakest burst from FRB 20121102A and is detectable at a distance exceeding 200 Mpc. Our finding bridges the gap between nearby and cosmological FRBs and indicates that FRBs hosted in globular clusters can be bright enough to be observable at cosmological distances. Repeating fast radio burst, FRB 20200120E, has been localized to a globular cluster M81. Here, the authors show detection of a burst from FRB 20200120E that is 42 times stronger than the previously detected bursts.
Diabetic retinopathy in predicting diabetic nephropathy in patients with type 2 diabetes and renal disease: a meta-analysis
Aims/hypothesis The aim of this meta-analysis is to determine the predictive value of diabetic retinopathy in differentiating diabetic nephropathy from non-diabetic renal diseases in patients with type 2 diabetes and renal disease. Methods Medline and Embase databases were searched from inception to February 2012. Renal biopsy studies of participants with type 2 diabetes were included if they contained data with measurements of diabetic retinopathy. Pooled sensitivity, specificity, positive predictive value, negative predictive value and other diagnostic indices were evaluated using a random-effects model. Results The meta-analysis investigated 26 papers with 2012 patients. The pooled sensitivity and specificity of diabetic retinopathy to predict diabetic nephropathy were 0.65 (95% CI 0.62, 0.68) and 0.75 (95% CI 0.73, 0.78), respectively. The pooled positive and negative predictive value of diabetic retinopathy to predict diabetic nephropathy were 0.72 (95% CI 0.68, 0.75) and 0.69 (95% CI 0.67, 0.72), respectively. The area under the summary receiver operating characteristic curve was 0.75, and the diagnostic odds ratio was 5.67 (95% CI 3.45, 9.34). For proliferative diabetic retinopathy, the pooled sensitivity was 0.25 (95% CI 0.16, 0.35), while the specificity was 0.98 (95% CI 0.92, 1.00). There was heterogeneity among studies ( p <  0.001), and no publishing bias was identified. Conclusions/interpretation Diabetic retinopathy is useful in diagnosing or screening for diabetic nephropathy in patients with type 2 diabetes and renal disease. Proliferative diabetic retinopathy may be a highly specific indicator for diabetic nephropathy.
Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources
The extension of the cosmic-ray spectrum beyond 1 petaelectronvolt (PeV; 10 15 electronvolts) indicates the existence of the so-called PeVatrons—cosmic-ray factories that accelerate particles to PeV energies. We need to locate and identify such objects to find the origin of Galactic cosmic rays 1 . The principal signature of both electron and proton PeVatrons is ultrahigh-energy (exceeding 100 TeV) γ radiation. Evidence of the presence of a proton PeVatron has been found in the Galactic Centre, according to the detection of a hard-spectrum radiation extending to 0.04 PeV (ref. 2 ). Although γ-rays with energies slightly higher than 0.1 PeV have been reported from a few objects in the Galactic plane 3 – 6 , unbiased identification and in-depth exploration of PeVatrons requires detection of γ-rays with energies well above 0.1 PeV. Here we report the detection of more than 530 photons at energies above 100 teraelectronvolts and up to 1.4 PeV from 12 ultrahigh-energy γ-ray sources with a statistical significance greater than seven standard deviations. Despite having several potential counterparts in their proximity, including pulsar wind nebulae, supernova remnants and star-forming regions, the PeVatrons responsible for the ultrahigh-energy γ-rays have not yet been firmly localized and identified (except for the Crab Nebula), leaving open the origin of these extreme accelerators. Observations of γ-rays with energies up to 1.4 PeV find that 12 sources in the Galaxy are PeVatrons, one of which is the Crab Nebula.
Novel chemotherapeutic agent FX-9 activates NF-κB signaling and induces G1 phase arrest by activating CDKN1A in a human prostate cancer cell line
Background The aminoisoquinoline FX-9 shows pro-apoptotic and antimitotic effects against lymphoblastic leukemia cells and prostate adenocarcinoma cells. In contrast, decreased cytotoxic effects against non-neoplastic blood cells, chondrocytes, and fibroblasts were observed. However, the actual FX-9 molecular mode of action is currently not fully understood. Methods In this study, microarray gene expression analysis comparing FX-9 exposed and unexposed prostate cancer cells (PC-3 representing castration-resistant prostate cancer), followed by pathway analysis and gene annotation to functional processes were performed. Immunocytochemistry staining was performed with selected targets. Results Expression analysis revealed 0.83% of 21,448 differential expressed genes (DEGs) after 6-h exposure of FX-9 and 0.68% DEGs after 12-h exposure thereof. Functional annotation showed that FX-9 primarily caused an activation of inflammatory response by non-canonical nuclear factor-kappa B (NF-κB) signaling. The 6-h samples showed activation of the cell cycle inhibitor CDKN1A which might be involved in the secondary response in 12-h samples. This secondary response predominantly consisted of cell cycle-related changes, with further activation of CDKN1A and inhibition of the transcription factor E2F1 , including downstream target genes, resulting in G1-phase arrest. Matching our previous observations on cellular level senescence signaling pathways were also found enriched. To verify these results immunocytochemical staining of p21 Waf1/Cip1 ( CDKN1A ), E2F1 ( E2F1 ), PAI-1 ( SERPNE1 ), and NFkB2/NFkB p 100 ( NFKB2 ) was performed. Increased expression of p21 Waf1/Cip1 and NFkB2/NFkB p 100 after 24-h exposure to FX-9 was shown. E2F1 and PAI-1 showed no increased expression. Conclusions FX-9 induced G1-phase arrest of PC-3 cells through activation of the cell cycle inhibitor CDKN1A , which was initiated by an inflammatory response of noncanonical NF-κB signaling.
Numerical Study on Cubic Particle Solid–Liquid Two-Phase Flow in Multistage Pump
To investigate the movement characteristics of cubic particles in a pump, a deep-sea mining lift model pump with a specific speed of 94 is used as the research object in this study. The discrete element method is coupled with the computational fluid dynamics method to simulate the solid–liquid two-phase flow of cubic particles with different densities in the pump while the effect of particle shape on the solid–liquid two-phase flow in the pump is considered. Results show that the cubic particle movement rules for the same flow component are the same. The cubic particle density imposes a more significant effect on the number of particles in the low-velocity zone than in other zones. The number of particles in the low-velocity zone increases with the increase of density. The cubic particle velocity gradient in the impeller decreases as the particle density increases, and the particles exhibit unsatisfactory following performance in the fluid. As the density increases, the collision exhibited by the cubic particles is primarily particle-to-particle collisions, (i.e., more than 37%), and the collision rate between the cubic particles and first-stage guide vane decreases significantly. Compared with cubic particles, spherical particles are likely to obstruct the flow channel in the guide vane. The collision exhibited by the spherical particles in the pump is primarily particle-to-guide vane collision, and the collision rate between the spherical particles decreases by 15.92%.
Magnetic Properties and Magnetocaloric Effect of Binary Compound NdPd
The crystal structure, magnetic and magnetocaloric properties of the binary NdPd compound were investigated by X-ray diffraction and the physical property measurement system in detail. The NdPd compound with a CrB structure exhibits a second-order magnetic phase transition from ferromagnetic to paramagnetic states at the Curie temperature T C  = 15.5 K. For a magnetic field change of 0–5 T, the peak value of magnetic entropy change (− Δ S M ) is evaluated to be 12.2 J/kg K, and the corresponding refrigerant capacity (RC) reaches its maximal value of 94 J/kg. The relatively small thermal hysteresis and magnetic hysteresis with the considerable magnetocaloric effect indicate that NdPd is an anticipated material for the low-temperature magnetic refrigeration.