Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
15 result(s) for "Xie, Xianyun"
Sort by:
Clinical and Biomarker Changes in Dominantly Inherited Alzheimer's Disease
In this study of a cohort of adults with genetic mutations that cause autosomal dominant Alzheimer's disease, researchers identified abnormalities in cerebrospinal fluid biomarkers and neuroimaging tests that develop decades before the onset of dementia. Alzheimer's disease is the most common cause of dementia and is currently estimated to affect more than 5 million people in the United States, with an expected increase to 13 million by the year 2050. The typical clinical presentation is progressive loss of memory and cognitive function, ultimately leading to a loss of independence and causing a heavy personal toll on the patient and the family. The costs of care of patients with Alzheimer's disease in 2010 were estimated at more than $172 billion in the United States, an annual cost that is predicted to increase to a trillion dollars . . .
Regional variability of imaging biomarkers in autosomal dominant Alzheimer’s disease
Major imaging biomarkers of Alzheimer’s disease include amyloid deposition [imaged with [ ¹¹C]Pittsburgh compound B (PiB) PET], altered glucose metabolism (imaged with [ ¹⁸F]fluro-deoxyglucose PET), and structural atrophy (imaged by MRI). Recently we published the initial subset of imaging findings for specific regions in a cohort of individuals with autosomal dominant Alzheimer’s disease. We now extend this work to include a larger cohort, whole-brain analyses integrating all three imaging modalities, and longitudinal data to examine regional differences in imaging biomarker dynamics. The anatomical distribution of imaging biomarkers is described in relation to estimated years from symptom onset. Autosomal dominant Alzheimer’s disease mutation carrier individuals have elevated PiB levels in nearly every cortical region 15 y before the estimated age of onset. Reduced cortical glucose metabolism and cortical thinning in the medial and lateral parietal lobe appeared 10 and 5 y, respectively, before estimated age of onset. Importantly, however, a divergent pattern was observed subcortically. All subcortical gray-matter regions exhibited elevated PiB uptake, but despite this, only the hippocampus showed reduced glucose metabolism. Similarly, atrophy was not observed in the caudate and pallidum despite marked amyloid accumulation. Finally, before hypometabolism, a hypermetabolic phase was identified for some cortical regions, including the precuneus and posterior cingulate. Additional analyses of individuals in which longitudinal data were available suggested that an accelerated appearance of volumetric declines approximately coincides with the onset of the symptomatic phase of the disease.
A Vehicle Trajectory Privacy Preservation Method Based on Caching and Dummy Locations in the Internet of Vehicles
In the internet of vehicles (IoVs), vehicle users should provide location information continuously when they want to acquire continuous location-based services (LBS), which may disclose the vehicle trajectory privacy. To solve the vehicle trajectory privacy leakage problem in the continuous LBS, we propose a vehicle trajectory privacy preservation method based on caching and dummy locations, abbreviated as TPPCD, in IoVs. In the proposed method, when a vehicle user wants to acquire a continuous LBS, the dummy locations-based location privacy preservation method under road constraint is used. Moreover, the cache is deployed at the roadside unit (RSU) to reduce the information interaction between vehicle users covered by the RSU and the LBS server. Two cache update mechanisms, the active cache update mechanism based on data popularity and the passive cache update mechanism based on dummy locations, are designed to protect location privacy and improve the cache hit rate. The performance analysis and simulation results show that the proposed vehicle trajectory privacy preservation method can resist the long-term statistical attack (LSA) and location correlation attack (LCA) from inferring the vehicle trajectory at the LBS server and protect vehicle trajectory privacy effectively. In addition, the proposed cache update mechanisms achieve a high cache hit rate.
Formation of active oxygen species on single-atom Pt catalyst and promoted catalytic oxidation of toluene
Catalytic oxidation of toluene over noble metal catalysts is a representative reaction for elimination of volatile organic compounds (VOCs). However, to fully understand the activation of molecular oxygen and the role of active oxygen species generated in this reaction is still a challenging target. Herein, MgO nanosheets and single-atom Pt loaded MgO (Pt SA/MgO) nanosheets were synthesized and used as catalysts in toluene oxidation. The activation process of molecular oxygen and oxidation performance on the two catalysts were contrastively investigated. The Pt SA/MgO exhibited significantly enhanced catalytic activity compared to MgO. The oxygen vacancies can be easily generated on the Pt SA/MgO surface, which facilitate the activation of molecular oxygen and the formation of active oxygen species. Based on the experimental data and theoretical calculations, an active oxygen species promoted oxidation mechanism for toluene was proposed. In the presence of H 2 O, the molecular oxygen is more favorable to be dissociated to generate •OH on the oxygen vacancies of the Pt SA/MgO surface, which is the dominant active oxygen species. We anticipate that this work may shed light on further investigation of the oxidation mechanism of toluene and other VOCs over noble metal catalysts.
A Location Privacy Preservation Method Based on Dummy Locations in Internet of Vehicles
During the procedure, a location-based service (LBS) query, the real location provided by the vehicle user may results in the disclosure of vehicle location privacy. Moreover, the point of interest retrieval service requires high accuracy of location information. However, some privacy preservation methods based on anonymity or obfuscation will affect the service quality. Hence, we study the location privacy-preserving method based on dummy locations in this paper. We propose a vehicle location privacy-preservation method based on dummy locations under road restriction in Internet of vehicles (IoV). In order to improve the validity of selected dummy locations under road restriction, entropy is used to represent the degree of anonymity, and the effective distance is introduced to represent the characteristics of location distribution. We present a dummy location selection algorithm to maximize the anonymous entropy and the effective distance of candidate location set consisting of vehicle user’s location and dummy locations, which ensures the uncertainty and dispersion of selected dummy locations. The proposed location privacy-preservation method does not need a trustable third-party server, and it protects the location privacy of vehicles as well as guaranteeing the LBS quality. The performance analysis and simulation results show that the proposed location privacy-preservation method can improve the validity of dummy locations and enhance the preservation of location privacy compared with other methods based on dummy locations.
Ground Radioactivity Distribution Reconstruction and Dose Rate Estimation Based on Spectrum Deconvolution
Estimating the gamma dose rate at one meter above ground level and determining the distribution of radioactive pollution from aerial radiation monitoring data are the core technical issues of unmanned aerial vehicle nuclear radiation monitoring. In this paper, a reconstruction algorithm of the ground radioactivity distribution based on spectral deconvolution was proposed for the problem of regional surface source radioactivity distribution reconstruction and dose rate estimation. The algorithm estimates unknown radioactive nuclide types and their distributions using spectrum deconvolution and introduces energy windows to improve the accuracy of the deconvolution results, achieving accurate reconstruction of multiple continuous distribution radioactive nuclides and their distributions, as well as dose rate estimation of one meter above ground level. The feasibility and effectiveness of the method were verified through cases of single-nuclide (137Cs) and multi-nuclide (137Cs and 60Co) surface sources by modeling and solving them. The results showed that the cosine similarities between the estimated ground radioactivity distribution and dose rate distribution with the true value were 0.9950 and 0.9965, respectively, which could prove that the proposed reconstruction algorithm would effectively distinguish multiple radioactive nuclides and accurately restore their radioactivity distribution. Finally, the influences of statistical fluctuation levels and the number of energy windows on the deconvolution results were analyzed, showing that the lower the statistical fluctuation level and the more energy window divisions, the better the deconvolution results.
Development of a digital imaging analysis system to evaluate the treatment response in superficial infantile hemangiomas
Superficial infantile hemangiomas (IH) are benign vascular tumors common in children characterized by bright red \"strawberry\" lesions on the skin. In order to optimize the treatment for this disease, there is a need to develop objective tools to assess treatment response. Since a color change in the lesion is a good indicator of treatment response, we have developed a digital imaging system to quantify the values of red, green, and blue (RGB) difference and RGB ratio between the tumor and normal tissue to take into account the variations in color between different skin types. The efficacy of the proposed system in assessing treatment response in superficial IH was evaluated in relation to established visual and biochemical tools used to grade hemangiomas. As the treatment progressed, the RGB ratio was almost 1, while the RGB difference was close to 0, which indicates a good response to treatment. There was a strong correlation between the RGB score and the other visual grading systems. However, the correlation between the RGB scoring system and the biochemical method was weak. These findings suggest that the system can be used clinically to objectively and accurately evaluate disease progression and treatment response in patients diagnosed with superficial IH.
LncRNA SNHG8 Serves as an Oncogene in Breast Cancer Through miR-634/ZBTB20 Axis
Small nucleolus RNA Host Gene 8 (SNHG8) belongs to a subgroup with long non-coding RNAs. LncRNA SNHG8 presents up-regulated in miscellaneous cancers, like gastric cancer, liver cancer, and esophageal squamous cell cancer. Nevertheless, the expression pattern and the pathological function of lncRNA SNHG8 in breast cancer remain obscure. We examined the expression levels of lncRNA SNHG8 in the tissue samples and cell lines from breast cancer via RT-qPCR in the present study. The functions of lncRNA SNHG8 on the progression of breast cancer cell were examined by CCK-8, EdU, Transwell chamber assays, and flow cytometry analyses. The expression of proteins was assessed using Western blot assay. We found that proliferation, migration, and invasion of breast cancer cells were significantly inhibited due to knockdown of lncRNA SNHG8, while inducing apoptosis of these cells. Mechanistically, SNHG8 functioned as an inhibitor of miR-634 in tumor tissues. LncRNA SNHG8 sponged the miR-634 to increase the expression level of ZBTB20, thus further aggravating the malignancy of breast cancer. Hence, the lncRNA SNHG8-miR-634-ZBTB20 axis may be a promising therapeutic target to treat breast cancers.
Composition and Expression of Genes Encoding Carbohydrate-Active Enzymes in the Straw-Degrading Mushroom Volvariella volvacea
Volvariella volvacea is one of a few commercial cultivated mushrooms mainly using straw as carbon source. In this study, the genome of V. volcacea was sequenced and assembled. A total of 285 genes encoding carbohydrate-active enzymes (CAZymes) in V. volvacea were identified and annotated. Among 15 fungi with sequenced genomes, V. volvacea ranks seventh in the number of genes encoding CAZymes. In addition, the composition of glycoside hydrolases in V. volcacea is dramatically different from other basidiomycetes: it is particularly rich in members of the glycoside hydrolase families GH10 (hemicellulose degradation) and GH43 (hemicellulose and pectin degradation), and the lyase families PL1, PL3 and PL4 (pectin degradation) but lacks families GH5b, GH11, GH26, GH62, GH93, GH115, GH105, GH9, GH53, GH32, GH74 and CE12. Analysis of genome-wide gene expression profiles of 3 strains using 3'-tag digital gene expression (DGE) reveals that 239 CAZyme genes were expressed even in potato destrose broth medium. Our data also showed that the formation of a heterokaryotic strain could dramatically increase the expression of a number of genes which were poorly expressed in its parental homokaryotic strains.