Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
37 result(s) for "Xie, You-Hua"
Sort by:
Advancements in detection of SARS-CoV-2 infection for confronting COVID-19 pandemics
As one of the major approaches in combating the COVID-19 pandemics, the availability of specific and reliable assays for the SARS-CoV-2 viral genome and its proteins is essential to identify the infection in suspected populations, make diagnoses in symptomatic or asymptomatic individuals, and determine clearance of the virus after the infection. For these purposes, use of the quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) for detection of the viral nucleic acid remains the most valuable in terms of its specificity, fast turn-around, high-throughput capacity, and reliability. It is critical to update the sequences of primers and probes to ensure the detection of newly emerged variants. Various assays for increased levels of IgG or IgM antibodies are available for detecting ongoing or past infection, vaccination responses, and persistence and for identifying high titers of neutralizing antibodies in recovered individuals. Viral genome sequencing is increasingly used for tracing infectious sources, monitoring mutations, and subtype classification and is less valuable in diagnosis because of its capacity and high cost. Nanopore target sequencing with portable options is available for a quick process for sequencing data. Emerging CRISPR-Cas-based assays, such as SHERLOCK and AIOD-CRISPR, for viral genome detection may offer options for prompt and point-of-care detection. Moreover, aptamer-based probes may be multifaceted for developing portable and high-throughput assays with fluorescent or chemiluminescent probes for viral proteins. In conclusion, assays are available for viral genome and protein detection, and the selection of specific assays depends on the purposes of prevention, diagnosis and pandemic control, or monitoring of vaccination efficacy. During the COVID-19 pandemics, sensitive and reliable assays for SARS-CoV-2 detection are essential for screening the population, identifying asymptomatic individuals, making diagnoses, monitoring treatment responses, and determining viral clearance. This review summarizes the principles, advantages, disadvantages, and specific applications of currently available assays for detection of the viral nucleotide, genome or proteins, as well as host antibody responses, and provide overall guidelines for selection of optimal assays for specific usage.
Serum HBeAg sero-conversion correlated with decrease of HBsAg and HBV DNA in chronic hepatitis B patients treated with a therapeutic vaccine
Currently, there are various approaches for developing therapeutic vaccines for chronic hepatitis B patients. Previously, an antigen–antibody-based therapeutic vaccine (YIC) has been conducted in a double-blind placebo controlled phase IIb clinical trial in 242 chronic hepatitis B patients. At the end of follow-up for 24 weeks, HBeAg sero-conversion rate was 21.6% in the 60 μg immunized group, compared to 9% in the alum immunized control group ( p = 0.03). To analyze the correlation between HBeAg-seroconversion, and decrease of serum HBsAg and HBV DNA, serum samples were back quantified for serum HBsAg and HBV DNA collected at baseline, end of treatment, and end of follow-up from patients who were treated either with 60 μg of YIC, or with placebo. Patients were dichotomized to HBeAg sero-converted and non-converted groups in comparison with patients in the placebo group. The correlations between HBeAg seroconversion and the decrease of HBsAg, HBV DNA and ALT levels during study period were analyzed using a logistic regression model. Results showed marked and sustained reduction of HBsAg, HBV DNA and ALT level in HBeAg sero-converted patients compared to those in patients of HBeAg non-converted and placebo groups. Reduction of HBV DNA and elevation of ALT was markedly associated with HBeAg seroconversion with an adjusted OR of 0.09 (95%CI: 0.01–0.62) and 0.08 (95%CI: 0.02–0.37) respectively after adjusted by age and sex, while reduction of HBsAg level was close to of significance ( p = 0.054). Analysis indicated that HBeAg sero-conversion was a reasonable endpoint for therapeutic vaccination.
Retrogression characteristics of a novel Al-Cu-Li-X alloy
Retrogression characteristics of a novel Al-Cu-Li-X alloy of 2A97 were studied by hardness testing, transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The retrogression treatments of aging at 155°C for 12 h followed by aging at 220 and 240°C were chosen by determining the peak temperature of δ' precipitation at 230°C by DSC. The retrogression treatment at a lower temperature of 220°C causes the precipitation and coarsening of δ' and θ' phases in the matrix, resulting in an increase in hardness. Retrogression at a higher temperature of 240°C causes the dissolution and coarsening of δ' and θ' precipitates in the matrix and on the grain boundaries, resulting in a decrease in hardness. Microstructural changes upon retrogression including the appearance of equilibrium precipitates such as T1, T2, δ', and θ are confirmed by the selected area electron diffraction and the bright and dark field image analysis.
Identification of an epitope of SARS-coronavirus nucleocapsid protein
The nucleocapsid (N) protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) is a majorvirion structural protein. In this study, two epitopes (N1 and N2) of the N protein of SARS-CoV were predicted by bioinformatics analysis. After immunization with two peptides, the peptides-specific antibodies were isolated from the immunized rabbits. The further experiments demonstrated that N1 peptide-induced polyclonal antibodies had a high affinity to bind to E. coli expressed N protein of SARS-CoV. Furthermore, itwas confirmed that N1 peptide-specific IgG antibodies were detectable in the sera of severe acute respiratory syndrome (SARS) patients. The results indicated that an epitope of the N protein has been identified andN protein specific Abs were produced by peptide immunization, which will be useful for the study of SARS-CoV.
The spike protein of severe acute respiratory syndrome (SARS) is cleaved in virus infected Vero-E6 cells
ABSTRACT Spike protein is one of the major structural proteins of severe acute respiratory syndrome-coronavirus. It is essential for the interaction of the virons with host cell receptors and subsequent fusion of the viral envelop with host cell membrane to allow infection. Some spike proteins of coronavirus, such as MHV, HCoV-OC43, AIBV and BcoV, are proteolytically cleaved into two subunits, S1 and S2. In contrast, TGV, FIPV and HCoV-229E are not. Many studies have shown that the cleavage of spike protein seriously affects its function. In order to investigate the maturation and proteolytic processing of the S protein of SARS CoV, we generated S1 and S2 subunit specific antibodies (Abs) as well as N, E and 3CL protein-specific Abs. Our results showed that the antibodies could efficiently and specifically bind to their corresponding proteins from E.coli expressed or lysate of SARS-CoV infected Vero-E6 cells by Western blot analysis. Furthermore, the anti-S1 and S2 Abs were proved to be capable of binding to SARS CoV under electron microscope observation. When S2 Ab was used to perform immune precipitation with lysate of SARS-CoV infected cells, a cleaved S2 fragment was detected with S2-specific mAb by Western blot analysis. The data demonstrated that the cleavage of S protein was observed in the lysate, indicating that proteolytic processing of S protein is present in host cells.
LRH-1/hB1F and HNF1 synergistically up-regulate hepatitis B virus gene transcription and DNA replication
Enhancer II (ENII) is one of the critical cis-elements in the Hepatitis B Virus (HBV) genome for the hepatic viral gene transcription and DNA replication. The liver-specific activity of ENII is regulated by multiple liver-enriched transcription factors, including LRH-1/hB1F, HNF1, HNF3b, HNF4 and C/EBP. Knowledge on the interplay of these important factors is still limited. In this study, we demonstrate a functional synergism between the orphan nuclear receptor LRH-1/hB1F and the homeoprotein HNF1 in up-regulating the liver-specific activity of ENII. This synergism is sufficient for initiating the viral gene transcription and DNA replication in non-hepatic cells. We have defined the activation domains in hB1F and HNF1 that contribute to the synergism. We further show that hB1F and HNF1 can interact directly in vitro and have mapped the domains required for this interaction.
Advancements in detection of SARS-CoV-2 infection for confronting COVID-19 pandemics
As one of the major approaches in combating the COVID-19 pandemics, the availability of specific and reliable assays for the SARS-CoV-2 viral genome and its proteins is essential to identify the infection in suspected populations, make diagnoses in symptomatic or asymptomatic individuals, and determine clearance of the virus after the infection. For these purposes, use of the quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) for detection of the viral nucleic acid remains the most valuable in terms of its specificity, fast turn-around, high-throughput capacity, and reliability. It is critical to update the sequences of primers and probes to ensure the detection of newly emerged variants. Various assays for increased levels of IgG or IgM antibodies are available for detecting ongoing or past infection, vaccination responses, and persistence and for identifying high titers of neutralizing antibodies in recovered individuals. Viral genome sequencing is increasingly used for tracing infectious sources, monitoring mutations, and subtype classification and is less valuable in diagnosis because of its capacity and high cost. Nanopore target sequencing with portable options is available for a quick process for sequencing data. Emerging CRISPR-Cas-based assays, such as SHERLOCK and AIOD-CRISPR, for viral genome detection may offer options for prompt and point-of-care detection. Moreover, aptamer-based probes may be multifaceted for developing portable and high-throughput assays with fluorescent or chemiluminescent probes for viral proteins. In conclusion, assays are available for viral genome and protein detection, and the selection of specific assays depends on the purposes of prevention, diagnosis and pandemic control, or monitoring of vaccination efficacy.
Identification of bis-benzylisoquinoline alkaloids as SARS-CoV-2 entry inhibitors from a library of natural products in vitro
Abstract Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major public health issue. To screen for antiviral drugs for COVID-19 treatment, we constructed a SARS-CoV-2 spike (S) pseudovirus system using an HIV-1-based lentiviral vector with a luciferase reporter gene to screen 188 small potential antiviral compounds. Using this system, we identified nine compounds, specifically, bis-benzylisoquinoline alkaloids, that potently inhibited SARS-CoV-2 pseudovirus entry, with EC50 values of 0.1–10 μM. Mechanistic studies showed that these compounds, reported as calcium channel blockers (CCBs), inhibited Ca2+-mediated membrane fusion and consequently suppressed coronavirus entry. These candidate drugs showed broad-spectrum efficacy against the entry of several coronavirus pseudotypes (SARS-CoV, MERS-CoV, SARS-CoV-2 [S-D614, S-G614, N501Y.V1 and N501Y.V2]) in different cell lines (293T, Calu-3, and A549). Antiviral tests using native SARS-CoV-2 in Vero E6 cells confirmed that four of the drugs (SC9/cepharanthine, SC161/hernandezine, SC171, and SC185/neferine) reduced cytopathic effect and supernatant viral RNA load. Among them, cepharanthine showed the strongest anti-SARS-CoV-2 activity. Collectively, this study offers new lead compounds for coronavirus antiviral drug discovery. Competing Interest Statement The authors have declared no competing interest. Footnotes * S-pseudotyped coronaviruses including two emerging SARS-CoV-2 variants N501Y.V1 and N501Y.V2, reported in United Kingdom and South Africa, were tested. Figure 1 revised; Figures S1 to S4 revised;Table S1 to S2 updated.
LRH-1/hB1F and HNF1 synergistically up-regulate hepatitis B virus gene transcription and DNA replication
ABSTRACT Enhancer II (ENII) is one of the critical cis -elements in the Hepatitis B Virus (HBV) genome for the hepatic viral gene transcription and DNA replication. The liver-specific activity of ENII is regulated by multiple liver-enriched transcription factors, including LRH-1/hB1F, HNF1, HNF3β, HNF4 and C/EBP. Knowledge on the interplay of these important factors is still limited. In this study, we demonstrate a functional synergism between the orphan nuclear receptor LRH-1/hB1F and the homeoprotein HNF1 in up-regulating the liver-specific activity of ENII. This synergism is sufficient for initiating the viral gene transcription and DNA replication in non-hepatic cells. We have defined the activation domains in hB1F and HNF1 that contribute to the synergism. We further show that hB1F and HNF1 can interact directly in vitro and have mapped the domains required for this interaction.