Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
118 result(s) for "Xu, Bingjun"
Sort by:
Understanding the complementarities of surface-enhanced infrared and Raman spectroscopies in CO adsorption and electrochemical reduction
In situ/operando surface enhanced infrared and Raman spectroscopies are widely employed in electrocatalysis research to extract mechanistic information and establish structure-activity relations. However, these two spectroscopic techniques are more frequently employed in isolation than in combination, owing to the assumption that they provide largely overlapping information regarding reaction intermediates. Here we show that surface enhanced infrared and Raman spectroscopies tend to probe different subpopulations of adsorbates on weakly adsorbing surfaces while providing similar information on strongly binding surfaces by conducting both techniques on the same electrode surfaces, i.e., platinum, palladium, gold and oxide-derived copper, in tandem. Complementary density functional theory computations confirm that the infrared and Raman intensities do not necessarily track each other when carbon monoxide is adsorbed on different sites, given the lack of scaling between the derivatives of the dipole moment and the polarizability. Through a comparison of adsorbed carbon monoxide and water adsorption energies, we suggest that differences in the infrared vs. Raman responses amongst metal surfaces could stem from the competitive adsorption of water on weak binding metals. We further determined that only copper sites capable of adsorbing carbon monoxide in an atop configuration visible to the surface enhanced infrared spectroscopy are active in the electrochemical carbon monoxide reduction reaction. Infrared and Raman spectroscopies are often assumed to provide similar insights into heterogeneous reaction mechanisms. This study shows that these techniques provide similar data when CO is strongly bound to a surface, yet distinct subpopulations of CO are probed when binding is weaker.
Influence of electric double layer rigidity on CO adsorption and electroreduction rate
Understanding the structure of the electric double layer (EDL) is critical for designing efficient electrocatalytic processes. However, the interplay between reactant adsorbates and the concentrated ionic species within the EDL remains an aspect that has yet to be fully explored. In the present study, we employ electrochemical CO reduction on Cu as a model reaction to reveal the significant impact of EDL structure on CO adsorption. By altering the sequence of applying negative potential and elevating CO pressure, we discern two distinct EDL structures with varying cation density and CO coverage. Our findings demonstrate that the EDL comprising densely packed cations substantially hinders CO adsorption on the Cu as opposed to the EDL containing less compact cations. These two different EDL structures remained stable over the course of our experiments, despite their identical initial and final conditions, suggesting an insurmountable kinetic barrier present in between. Moreover, we show that the size and identity of cations play decisive roles in determining the properties of the EDL in CO electroreduction on Cu. This study presents a refined adaptation of the classical Gouy-Chapman-Stern model and highlights its catalytic importance, which bridges the mechanistic gap between the EDL structure and cathodic reactions. High-pressure infrared spectroscopy shows concentrated cations suppress CO adsorption. Here the authors report two electrochemical interfaces forming distinct double layer structures and reaction rates at elevating pressure and various potentials.
Electrokinetic and in situ spectroscopic investigations of CO electrochemical reduction on copper
Rigorous electrokinetic results are key to understanding the reaction mechanisms in the electrochemical CO reduction reaction (CORR), however, most reported results are compromised by the CO mass transport limitation. In this work, we determined mass transport-free CORR kinetics by employing a gas-diffusion type electrode and identified dependence of catalyst surface speciation on the electrolyte pH using in-situ surface enhanced vibrational spectroscopies. Based on the measured Tafel slopes and reaction orders, we demonstrate that the formation rates of C 2+ products are most likely limited by the dimerization of CO adsorbate. CH 4 production is limited by the CO hydrogenation step via a proton coupled electron transfer and a chemical hydrogenation step of CO by adsorbed hydrogen atom in weakly (7 < pH < 11) and strongly (pH > 11) alkaline electrolytes, respectively. Further, CH 4 and C 2+ products are likely formed on distinct types of active sites. Electrokinetic results are key to understanding the mechanisms in electrochemical CO reduction reaction. Here, the authors determine mass transport free kinetics using a gas-diffusion electrode and identified dependence of copper surface speciation on the electrolyte pH using in situ surface enhanced spectroscopies.
Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2
The electrochemical reduction of CO 2 could play an important role in addressing climate-change issues and global energy demands as part of a carbon-neutral energy cycle. Single-atom catalysts can display outstanding electrocatalytic performance; however, given their single-site nature they are usually only amenable to reactions that involve single molecules. For processes that involve multiple molecules, improved catalytic properties could be achieved through the development of atomically dispersed catalysts with higher complexities. Here we report a catalyst that features two adjacent copper atoms, which we call an ‘atom-pair catalyst’, that work together to carry out the critical bimolecular step in CO 2 reduction. The atom-pair catalyst features stable Cu 1 0 –Cu 1 x + pair structures, with Cu 1 x + adsorbing H 2 O and the neighbouring Cu 1 0 adsorbing CO 2 , which thereby promotes CO 2 activation. This results in a Faradaic efficiency for CO generation above 92%, with the competing hydrogen evolution reaction almost completely suppressed. Experimental characterization and density functional theory revealed that the adsorption configuration reduces the activation energy, which generates high selectivity, activity and stability under relatively low potentials. Anchored single-atom catalysts have recently been shown to be very active for various processes, however, a catalyst that features two adjacent copper atoms—which we call an atom-pair catalyst—is now reported. The Cu 1 0 –Cu 1 x + pair structures work together to carry out the critical bimolecular step in CO 2 reduction.
Oxygen induced promotion of electrochemical reduction of CO2 via co-electrolysis
Harnessing renewable electricity to drive the electrochemical reduction of CO 2 is being intensely studied for sustainable fuel production and as a means for energy storage. Copper is the only monometallic electrocatalyst capable of converting CO 2 to value-added products, e.g., hydrocarbons and oxygenates, but suffers from poor selectivity and mediocre activity. Multiple oxidative treatments have shown improvements in the performance of copper catalysts. However, the fundamental underpinning for such enhancement remains controversial. Here, we combine reactivity, in-situ surface-enhanced Raman spectroscopy, and computational investigations to demonstrate that the presence of surface hydroxyl species by co-electrolysis of CO 2 with low concentrations of O 2 can dramatically enhance the activity of copper catalyzed CO 2 electroreduction. Our results indicate that co-electrolysis of CO 2 with an oxidant is a promising strategy to introduce catalytically active species in electrocatalysis. While the electrochemical conversion of CO 2 to highly reduced products is unique to copper, there are still gaps in understanding copper catalysts’ efficacy. Here, authors find that co-electrolysis of CO 2 with O 2 can enhance copper’s catalytic activities.
Weak CO binding sites induced by Cu–Ag interfaces promote CO electroreduction to multi-carbon liquid products
Electrochemical reduction of carbon monoxide to high-value multi-carbon (C 2+ ) products offers an appealing route to store sustainable energy and make use of the chief greenhouse gas leading to climate change, i.e., CO 2 . Among potential products, C 2+ liquid products such as ethanol are of particular interest owing to their high energy density and industrial relevance. In this work, we demonstrate that Ag-modified oxide-derive Cu catalysts prepared via high-energy ball milling exhibit near 80% Faradaic efficiencies for C 2+ liquid products at commercially relevant current densities (>100 mA cm −2 ) in the CO electroreduction in a microfluidic flow cell. Such performance is retained in an over 100-hour electrolysis in a 100 cm 2 membrane electrode assembly (MEA) electrolyzer. A method based on surface-enhanced infrared absorption spectroscopy is developed to characterize the CO binding strength on the catalyst surface. The lower C and O affinities of the Cu–Ag interfacial sites in the prepared catalysts are proposed to be responsible for the enhanced selectivity for C 2+ oxygenates, which is the experimental verification of recent computational predictions. Here, the authors demonstrate a Cu-based catalyst with Cu–Ag interfacial sites, which favor oxygenate over alcohol production in CO 2 electroreduction. Near 80% selectivity for multi-carbon liquid products in a 100 cm 2 membrane electrode assembly electrolyzer is exhibited over 100 h.
Understanding solvent effects on adsorption and protonation in porous catalysts
Solvent selection is a pressing challenge in developing efficient and selective liquid phase catalytic processes, as predictive understanding of the solvent effect remains lacking. In this work, an attenuated total reflection infrared spectroscopy technique is developed to quantitatively measure adsorption isotherms on porous materials in solvent and decouple the thermodynamic contributions of van der Waals interactions within zeolite pore walls from those of pore-phase proton transfer. While both the pore diameter and the solvent identity dramatically impact the confinement (adsorption) step, the solvent identity plays a dominant role in proton-transfer. Combined computational and experimental investigations show increasingly favorable pore-phase proton transfer to pyridine in the order: water < acetonitrile < 1,4 – dioxane. Equilibrium methods unaffected by mass transfer limitations are outlined for quantitatively estimating fundamental thermodynamic values using statistical thermodynamics. Liquid phase reactions mediated by solid catalysts occur in the presence of solvents whose role needs to be understood. The authors use attenuated total reflection infrared spectroscopy to measure liquid-phase pyridine adsorption isotherms in zeolites, elucidating the effect of coadsorbed solvents on the interactions.
Interface synergism and engineering of Pd/Co@N-C for direct ethanol fuel cells
Direct ethanol fuel cells have been widely investigated as nontoxic and low-corrosive energy conversion devices with high energy and power densities. It is still challenging to develop high-activity and durable catalysts for a complete ethanol oxidation reaction on the anode and accelerated oxygen reduction reaction on the cathode. The materials’ physics and chemistry at the catalytic interface play a vital role in determining the overall performance of the catalysts. Herein, we propose a Pd/Co@N-C catalyst that can be used as a model system to study the synergism and engineering at the solid-solid interface. Particularly, the transformation of amorphous carbon to highly graphitic carbon promoted by cobalt nanoparticles helps achieve the spatial confinement effect, which prevents structural degradation of the catalysts. The strong catalyst-support and electronic effects at the interface between palladium and Co@N-C endow the electron-deficient state of palladium, which enhances the electron transfer and improved activity/durability. The Pd/Co@N-C delivers a maximum power density of 438 mW cm −2 in direct ethanol fuel cells and can be operated stably for more than 1000 hours. This work presents a strategy for the ingenious catalyst structural design that will promote the development of fuel cells and other sustainable energy-related technologies. It is challenging to develop high-activity and durable catalysts for both ethanol oxidation reaction on the anode and oxygen reduction reaction on the cathode. Here in this work, authors proposed Pd/Co@N-C catalyst as a model to synergistically maximize the usage of catalyst nanoparticles and active interfaces for direct ethanol fuel cells.
Origin and effect of surface oxygen-containing species on electrochemical CO or CO2 reduction reactions
Renewable-energy-powered electrochemical CO or CO 2 reduction reactions (CO (2) RR) provide one of the most promising strategies to upgrade CO 2 to valuable products. In the past decade, the existence and the mechanistic role of oxygen-containing species, such as (sub)surface oxide, hydroxide and oxyhydroxide species, at the electrode—electrolyte interface under reductive conditions have emerged as a topic of acute discussion within the CO (2) RR field. Oxide-derived Cu attracted the most attention, while other surfaces, including Au, Ag and Sn, were also widely investigated. This minireview identifies likely causes for contrasting results and views in the literature, summarizes possible oxygen sources for the interfacial oxygen-containing species at the CO (2) RR conditions, and discusses potential roles these species could play in affecting the rate and product distribution. Finally, perspectives on future efforts to reveal the identity and role of oxygen-containing species in the CO (2) RR are presented.
Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane
Electroreduction of carbon dioxide to hydrocarbons and oxygenates on copper involves reduction to a carbon monoxide adsorbate followed by further transformation to hydrocarbons and oxygenates. Simultaneous improvement of these processes over a single reactive site is challenging due to the linear scaling relationship of the binding strength of key intermediates. Herein, we report improved electroreduction of carbon dioxide by exploiting a one-pot tandem catalysis mechanism based on computational and electrochemical investigations. By constructing a well-defined copper-modified silver surface, adsorbed carbon monoxide generated on the silver sites is proposed to migrate to surface copper sites for the subsequent reduction to methane, which is consistent with insights gained from operando attenuated total reflectance surface enhanced infrared absorption spectroscopic investigations. Our results provide a promising approach for designing carbon dioxide electroreduction catalysts to enable one-pot reduction of products beyond carbon monoxide and formate. Carbon dioxide can be electrocatalytically reduced to valuable fuels and chemicals, but is hindered by poor catalytic efficiency and selectivity. Here the authors report improved electrocatalytic conversion of carbon dioxide into methane using a tandem catalysis strategy.