MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2
Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2
Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2
Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2
Journal Article

Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2

2019
Request Book From Autostore and Choose the Collection Method
Overview
The electrochemical reduction of CO 2 could play an important role in addressing climate-change issues and global energy demands as part of a carbon-neutral energy cycle. Single-atom catalysts can display outstanding electrocatalytic performance; however, given their single-site nature they are usually only amenable to reactions that involve single molecules. For processes that involve multiple molecules, improved catalytic properties could be achieved through the development of atomically dispersed catalysts with higher complexities. Here we report a catalyst that features two adjacent copper atoms, which we call an ‘atom-pair catalyst’, that work together to carry out the critical bimolecular step in CO 2 reduction. The atom-pair catalyst features stable Cu 1 0 –Cu 1 x + pair structures, with Cu 1 x + adsorbing H 2 O and the neighbouring Cu 1 0 adsorbing CO 2 , which thereby promotes CO 2 activation. This results in a Faradaic efficiency for CO generation above 92%, with the competing hydrogen evolution reaction almost completely suppressed. Experimental characterization and density functional theory revealed that the adsorption configuration reduces the activation energy, which generates high selectivity, activity and stability under relatively low potentials. Anchored single-atom catalysts have recently been shown to be very active for various processes, however, a catalyst that features two adjacent copper atoms—which we call an atom-pair catalyst—is now reported. The Cu 1 0 –Cu 1 x + pair structures work together to carry out the critical bimolecular step in CO 2 reduction.