Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
43,579
result(s) for
"Yang, Peng-Peng"
Sort by:
Ternary nickel–tungsten–copper alloy rivals platinum for catalyzing alkaline hydrogen oxidation
2021
Operating fuel cells in alkaline environments permits the use of platinum-group-metal-free (PGM-free) catalysts and inexpensive bipolar plates, leading to significant cost reduction. Of the PGM-free catalysts explored, however, only a few nickel-based materials are active for catalyzing the hydrogen oxidation reaction (HOR) in alkali; moreover, these catalysts deactivate rapidly at high anode potentials owing to nickel hydroxide formation. Here we describe that a nickel–tungsten–copper (Ni
5.2
WCu
2.2
) ternary alloy showing HOR activity rivals Pt/C benchmark in alkaline electrolyte. Importantly, we achieved a high anode potential up to 0.3 V versus reversible hydrogen electrode on this catalyst with good operational stability over 20 h. The catalyst also displays excellent CO-tolerant ability that Pt/C catalyst lacks. Experimental and theoretical studies uncover that nickel, tungsten, and copper play in synergy to create a favorable alloying surface for optimized hydrogen and hydroxyl bindings, as well as for the improved oxidation resistance, which result in the HOR enhancement.
The lack of efficient and cost-effective catalysts for H
2
oxidation reaction (HOR) hinders the application of anion exchange membrane fuel cells. Here, authors report a ternary nickel-tungsten-copper nanoalloy with marked HOR activity and stability that rivals the benchmark platinum catalyst.
Journal Article
Stabilizing indium sulfide for CO2 electroreduction to formate at high rate by zinc incorporation
by
Niu, Zhuang-Zhuang
,
Zhang, Xiao-Long
,
Gao, Fei-Yue
in
639/301/299/886
,
639/638/161/886
,
639/638/298
2021
Recently developed solid-state catalysts can mediate carbon dioxide (CO
2
) electroreduction to valuable products at high rates and selectivities. However, under commercially relevant current densities of > 200 milliamperes per square centimeter (mA cm
−2
), catalysts often undergo particle agglomeration, active-phase change, and/or element dissolution, making the long-term operational stability a considerable challenge. Here we report an indium sulfide catalyst that is stabilized by adding zinc in the structure and shows dramatically improved stability. The obtained ZnIn
2
S
4
catalyst can reduce CO
2
to formate with 99.3% Faradaic efficiency at 300 mA cm
−2
over 60 h of continuous operation without decay. By contrast, similarly synthesized indium sulfide without zinc participation deteriorates quickly under the same conditions. Combining experimental and theoretical studies, we unveil that the introduction of zinc largely enhances the covalency of In-S bonds, which “locks” sulfur—a catalytic site that can activate H
2
O to react with CO
2
, yielding HCOO* intermediates—from being dissolved during high-rate electrolysis.
Developing durable catalysts for carbon dioxide reduction to formate at commercial-scale current densities is challenging. This work reports that indium sulfide stabilized through zinc incorporation can produce formate efficiently and quickly at high current densities over long timescales.
Journal Article
Polymorphic cobalt diselenide as extremely stable electrocatalyst in acidic media via a phase-mixing strategy
2019
Many platinum group metal-free inorganic catalysts have demonstrated high intrinsic activity for diverse important electrode reactions, but their practical use often suffers from undesirable structural degradation and hence poor stability, especially in acidic media. We report here an alkali-heating synthesis to achieve phase-mixed cobalt diselenide material with nearly homogeneous distribution of cubic and orthorhombic phases. Using water electroreduction as a model reaction, we observe that the phase-mixed cobalt diselenide reaches the current density of 10 milliamperes per square centimeter at overpotential of mere 124 millivolts in acidic electrolyte. The catalyst shows no sign of deactivation after more than 400 h of continuous operation and the polarization curve is well retained after 50,000 potential cycles. Experimental and computational investigations uncover a boosted covalency between Co and Se atoms resulting from the phase mixture, which substantially enhances the lattice robustness and thereby the material stability. The findings provide promising design strategy for long-lived catalysts in acid through crystal phase engineering.
Noble-metal-free catalysts often show stability issues in acidic media due to structural degradation. Here authors show that phase-mixed engineering of cobalt diselenide electrocatalysts can enable greater covalency of Co-Se bonds and improve robustness for catalyzing hydrogen evolution in acid.
Journal Article
In situ ammonium formation mediates efficient hydrogen production from natural seawater splitting
2024
Seawater electrolysis using renewable electricity offers an attractive route to sustainable hydrogen production, but the sluggish electrode kinetics and poor durability are two major challenges. We report a molybdenum nitride (Mo
2
N) catalyst for the hydrogen evolution reaction with activity comparable to commercial platinum on carbon (Pt/C) catalyst in natural seawater. The catalyst operates more than 1000 hours of continuous testing at 100 mA cm
−2
without degradation, whereas massive precipitate (mainly magnesium hydroxide) forms on the Pt/C counterpart after 36 hours of operation at 10 mA cm
−2
. Our investigation reveals that ammonium groups generate in situ at the catalyst surface, which not only improve the connectivity of hydrogen-bond networks but also suppress the local pH increase, enabling the enhanced performances. Moreover, a zero-gap membrane flow electrolyser assembled by this catalyst exhibits a current density of 1 A cm
−2
at 1.87 V and 60
o
C in simulated seawater and runs steadily over 900 hours.
Efficient catalysts for seawater electrolysis are crucial for sustainable hydrogen production but struggle with slow kinetics and low durability. Here, the authors report a molybdenum nitride catalyst that in situ generates ammonium groups, enhancing both performance and stability in natural seawater.
Journal Article
Quaternary stereocentres via catalytic enantioconvergent nucleophilic substitution reactions of tertiary alkyl halides
2021
The development of efficient methods, particularly catalytic and enantioselective processes, for the construction of all-carbon quaternary stereocentres is an important (and difficult) challenge in organic synthesis due to the occurrence of this motif in a range of bioactive molecules. One conceptually straightforward and potentially versatile approach is the catalytic enantioconvergent substitution reaction of a readily available racemic tertiary alkyl electrophile by an organometallic nucleophile; however, examples of such processes are rare. Here we demonstrate that a nickel-based chiral catalyst achieves enantioconvergent couplings of a variety of tertiary electrophiles (cyclic and acyclic α-halocarbonyl compounds) with alkenylmetal nucleophiles to form quaternary stereocentres with good yield and enantioselectivity under mild conditions in the presence of a range of functional groups. These couplings, which probably proceed via a radical pathway, provide access to an array of useful families of organic compounds, including intermediates in the total synthesis of two natural products, (–)-eburnamonine and madindoline A.A wide variety of bioactive molecules contain stereogenic quaternary carbons, and developing methods for the construction of these stereocentres continues to be an active area of research. Now, it has been shown that a nickel-catalysed enantioconvergent coupling of tertiary alkyl electrophiles with alkenylmetal nucleophiles—which probably proceeds via a radical pathway—can form and set quaternary stereocentres efficiently under mild conditions.
Journal Article
The genome of medicinal leech (Whitmania pigra) and comparative genomic study for exploration of bioactive ingredients
by
Su, Yuan
,
Tong, Xiang-Rong
,
Yang, Peng-Peng
in
Alternative medicine
,
Animal Genetics and Genomics
,
Animals
2022
Background
Leeches are classic annelids that have a huge diversity and are closely related to people, especially medicinal leeches. Medicinal leeches have been widely utilized in medicine based on the pharmacological activities of their bioactive ingredients. Comparative genomic study of these leeches enables us to understand the difference among medicinal leeches and other leeches and facilitates the discovery of bioactive ingredients.
Results
In this study, we reported the genome of
Whitmania pigra
and compared it with
Hirudo medicinalis
and
Helobdella robusta
. The assembled genome size of
W. pigra
is 177 Mbp, close to the estimated genome size. Approximately about 23% of the genome was repetitive. A total of 26,743 protein-coding genes were subsequently predicted.
W. pigra
have 12346 (46%) and 10295 (38%) orthologous genes with
H. medicinalis
and
H. robusta
, respectively. About 20 and 24% genes in
W. pigra
showed syntenic arrangement with
H. medicinalis
and
H. robusta
, respectively
,
revealed by gene synteny analysis. Furthermore,
W. pigra, H. medicinalis
and
H. robusta
expanded different gene families enriched in different biological processes. By inspecting genome distribution and gene structure of hirudin, we identified a new hirudin gene g17108 (hirudin_2) with different cysteine patterns. Finally, we systematically explored and compared the active substances in the genomes of three leech species. The results showed that
W. pigra
and
H. medicinalis
exceed
H. robusta
in both kinds and gene number of active molecules.
Conclusions
This study reported the genome of
W. pigra
and compared it with other two leeches, which provides an important genome resource and new insight into the exploration and development of bioactive molecules of medicinal leeches.
Journal Article
Enhancement of TKI sensitivity in lung adenocarcinoma through m6A-dependent translational repression of Wnt signaling by circ-FBXW7
by
Li, Kai
,
Sun, Ye
,
Liu, Da-Peng
in
Adenocarcinoma
,
Adenocarcinoma of Lung - drug therapy
,
Adenocarcinoma of Lung - genetics
2023
Background
Tyrosine kinase inhibitors (TKIs) that specifically target mutational points in the EGFR gene have significantly reduced suffering and provided greater relief to patients with lung adenocarcinoma (LUAD). The third-generation EGFR-TKI, Osimertinib, has been successfully employed in clinical treatments to overcome resistance to both original and acquired T790M and L858R mutational points. Nevertheless, the issue of treatment failure response has emerged as an insurmountable problem.
Methods
By employing a combination of multiple and integrated approaches, we successfully identified a distinct population within the tumor group that plays a significant role in carcinogenesis, resistance, and recurrence. Our research suggests that addressing TKI resistance may involve targeting the renewal and repopulation of stem-like cells. To investigate the underlying mechanisms, we conducted RNA Microarray and m6A Epi-Transcriptomic Microarray analyses, followed by assessment of transcription factors. Additionally, we specifically designed a tag to detect the polypeptide circRNA-AA, and its expression was confirmed through m6A regulations.
Results
We initially identified unique molecular signatures present in cancer stem cells that contributed to poor therapeutic responses. Activation of the alternative Wnt pathway was found to sustain the renewal and resistant status of these cells. Through bioinformatics analysis and array studies, we observed a significant decrease in the expression of circFBXW7 in Osimertinib-resistant cell lines. Notably, the abnormal expression pattern of circFBXW7 determined the cellular response to Osimertinib. Functional investigations revealed that circFBXW7 inhibits the renewal of cancer stem cells and resensitizes both resistant LUAD cells and stem cells to Osimertinib. In terms of the underlying mechanism, we discovered that circFBXW7 can be translated into short polypeptides known as circFBXW7-185AA. These polypeptides interact with β-catenin in an m6A-dependent manner. This interaction leads to reduced stability of β-catenin by inducing subsequent ubiquitination, thereby suppressing the activation of canonical Wnt signaling. Additionally, we predicted that the m6A reader, YTHDF3, shares common binding sites with hsa-Let-7d-5p. Enforced expression of Let-7d post-transcriptionally decreases the levels of YTHDF3. The repression of Let-7d by Wnt signaling releases the stimulation of m6A modification by YTHDF3, promoting the translation of circFBXW7-185AA. This creates a positive feedback loop contributing to the cascade of cancer initiation and promotion.
Conclusions
Our bench study, in vivo experiments, and clinical validation have unequivocally shown that circFBXW7 effectively inhibits the abilities of LUAD stem cells and reverses resistance to TKIs by modulating Wnt pathway functions through the action of circFBXW7-185AA on β-catenin ubiquitination and inhibition. The regulatory role of circRNA in Osimertinib treatment has been rarely reported, and our findings reveal that this process operates under the influence of m6A modification. These results highlight the tremendous potential of this approach in enhancing therapeutic strategies and overcoming resistance to multiple TKI treatments.
Journal Article