Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
79
result(s) for
"Yang, Tsai-Hsien"
Sort by:
A Review of Daylighting System: For Prototype Systems Performance and Development
by
Tseng, Wei-Chieh
,
Deng, Zhong-Hao
,
Chen, Yi-Yung
in
Alternative energy sources
,
daylight
,
daylighting system
2019
Daylighting systems make daylight illuminance possible, and the development of prototype daylighting systems can provide more efficient daylight illuminance. The purpose of this article is to review the development and performance of prototype daylighting systems in the last decade. The passive and active daylighting systems are listed separately and divided into the four categories by the presence and absence of hybrid. Each prototype daylighting system was evaluated in terms of cost and daylight performance and as well as their novel optical design. We evaluated the architecture and daylighting principles of each system by reviewing individual prototype daylighting systems. The cost of prototype systems still poses a challenge to development. How to use passive or active systems in different environments and whether or not electrical lighting assistance is needed is a controversial issue. However, active daylighting systems equipped with solar tracking systems are still mainstream. This research is a valuable resource for daylight researchers and newcomers. It is helpful to understand the advantages of various prototype daylighting systems and commercial daylighting systems that have been developed for many years; moreover, it is also possible to know the research directions suggested by the prototype daylighting systems. These will be of further use in developing innovative and better daylighting systems and designs.
Journal Article
Doxycycline Ameliorates the Severity of Experimental Proliferative Vitreoretinopathy in Mice
by
Lin, Yu-Jheng
,
Tsai, Hsien-Yang
,
Yang, Chang-Hao
in
Animals
,
Anti-Bacterial Agents - administration & dosage
,
Cell adhesion & migration
2021
After successful surgeries for patients with rhegmatogenous retinal detachment, the most common cause of retinal redetachment is proliferative vitreoretinopathy (PVR), which causes severe vision impairment and even blindness worldwide. Until now, the major treatment for PVR is surgical removal of the epiretinal membrane, while effective treatment to prevent PVR is still unavailable. Therefore, we investigated the potential of doxycycline, an antibiotic in the tetracycline class, to treat PVR using a mouse model. We used the human retinal pigment epithelial cell line, ARPE-19, for in vitro and in vivo studies to test doxycycline for PVR treatment. We found that doxycycline suppressed the migration, proliferation, and contraction of ARPE-19 cells with reduced p38 MAPK activation and total MMP activity. Intravitreal doxycycline and topical tetracycline treatment significantly ameliorated the PVR severity induced by ARPE-19 cells in mice. PVR increased the expression of MMP-9 and IL-4 and p38 MAPK phosphorylation and modestly decreased IL-10. These effects were reversed by doxycycline and tetracycline treatment in the mouse retina. These results suggest that doxycycline will be a potential treatment for PVR in the future.
Journal Article
Chitosan Oligosaccharides Suppress Nuclear Factor-Kappa B Activation and Ameliorate Experimental Autoimmune Uveoretinitis in Mice
by
Tsai, Hsien-Yang
,
Yang, Chang-Hao
,
Chen, Shun-Hua
in
Animals
,
Autoimmune Diseases - drug therapy
,
Autoimmune Diseases - immunology
2020
We investigated the therapeutic potential and mechanism of chitosan oligosaccharides (COS) for experimental autoimmune uveoretinitis (EAU) in mice. EAU was induced in C57/BL6 mice by injection of human interphotoreceptor retinoid-binding protein (IRBP) peptides. At the same time, a high or low dose (20 or 10 mg/kg) of COS or phosphate-buffered saline (PBS) was given to mice daily after EAU induction. We found that mouse EAU is ameliorated by the high-dose COS treatment when compared with PBS treatment. In the retinas of high-dose COS-treated mice, the nuclear translocation of NF-κB subunit (p65) was suppressed, and the expression of several key EAU inflammatory mediators, IFN-γ, TNF-α, IL-1α, IL-4, IL-5, IL-6, IL-10, IL-17 and MCP-1 was lowered. These results suggest that COS may be a potential treatment for posterior uveitis.
Journal Article
Suppression of the Reactive Oxygen Response Alleviates Experimental Autoimmune Uveitis in Mice
2020
Reactive oxygen species (ROS) are produced by host phagocytes and play an important role in antimicrobial actions against various pathogens. Autoimmune uveitis causes blindness and severe visual impairment in humans at all ages worldwide. However, the role of ROS in autoimmune uveitis remains unclear. We used ROS-deficient (Ncf1−/−) mice to investigate the role of ROS in experimental autoimmune uveitis (EAU). Besides, we also used the antioxidant N-acetylcysteine (NAC) treatment to evaluate the effect of suppression of ROS on EAU in mice. The EAU disease scores of Ncf1−/− mice were significantly lower than those of wild-type mice. EAU induction increased the levels of cytokines (interleukin (IL)-1α, IL-1β, IL-4, IL-6, IL-12, IL-17, and tumor necrosis factor (TNF)-α) and chemokines (monocyte chemoattractant protein (MCP)-1) in the retinas of wild-type mice but not in those of Ncf1−/− mice. EAU induction enhanced the level of NF-κB activity in wild-type mice. However, the level of NF-κB activity in Ncf1−/− mice with EAU induction was low. Treatment with the antioxidant NAC also decreased the severity of EAU in mice with reduced levels of oxidative stress, inflammatory mediators, and NF-κB activation in the retina. We successfully revealed a novel role of ROS in the pathogenesis of EAU and suggest a potential antioxidant role for the treatment of autoimmune uveitis in the future.
Journal Article
Microglia Reduce Herpes Simplex Virus 1 Lethality of Mice with Decreased T Cell and Interferon Responses in Brains
2021
Herpes simplex virus 1 (HSV-1) infects the majority of the human population and can induce encephalitis, which is the most common cause of sporadic, fatal encephalitis. An increase of microglia is detected in the brains of encephalitis patients. The issues regarding whether and how microglia protect the host and neurons from HSV-1 infection remain elusive. Using a murine infection model, we showed that HSV-1 infection on corneas increased the number of microglia to outnumber those of infiltrating leukocytes (macrophages, neutrophils, and T cells) and enhanced microglia activation in brains. HSV-1 antigens were detected in brain neurons, which were surrounded by microglia. Microglia depletion increased HSV-1 lethality of mice with elevated brain levels of viral loads, infected neurons, neuron loss, CD4 T cells, CD8 T cells, neutrophils, interferon (IFN)-β, and IFN-γ. In vitro studies demonstrated that microglia from infected mice reduced virus infectivity. Moreover, microglia induced IFN-β and the signaling pathway of signal transducer and activator of transcription (STAT) 1 to inhibit viral replication and damage of neurons. Our study reveals how microglia protect the host and neurons from HSV-1 infection.
Journal Article
Genetic Insights and Clinical Implications of NEU1 Mutations in Sialidosis
2025
Sialidosis is a rare autosomal recessive lysosomal storage disorder caused by mutations in the NEU1 gene, resulting in deficient neuraminidase-1 activity and the subsequent accumulation of sialylated compounds in lysosomes. This review comprehensively analyzes the genetic and clinical heterogeneity associated with sialidosis, emphasizing the distinction between the milder type I form and the more severe type II form. Over 90 pathogenic NEU1 variants, predominantly missense mutations, have been identified, highlighting significant phenotypic diversity. Advancements in genomic sequencing technologies have facilitated the identification of known and novel mutations, with population-specific insights elucidating ethnic variability in symptomatology and genetic profiles. Recent case studies, including a novel compound heterozygous variant, further illustrate the complexity of the genotype–phenotype correlations. Emerging therapeutic approaches, such as enzyme replacement therapy and adeno-associated virus-mediated gene therapy, demonstrate promising potential for restoring neuraminidase-1 function and improving outcomes in preclinical models. This review emphasizes the critical role of genetic analysis in diagnosis and management while advocating for continued research into the molecular mechanisms underlying sialidosis to enable the development of targeted, personalized treatments.
Journal Article
Zernike Coefficient Prediction Technique for Interference Based on Generation Adversarial Network
2021
In the paper, we propose a novel prediction technique to predict Zernike coefficients from interference fringes based on Generative Adversarial Network (GAN). In general, the task of GAN is image-to-image translation, but we design GAN for image-to-number translation. In the GAN model, the Generator’s input is the interference fringe image, and its output is a mosaic image. Moreover, each piece of the mosaic image links to the number of Zernike coefficients. Root Mean Square Error (RMSE) is our criterion for quantifying the ground truth and prediction coefficients. After training the GAN model, we use two different methods: the formula (ideal images) and optics simulation (simulated images) to estimate the GAN model. As a result, the RMSE is about 0.0182 ± 0.0035λ with the ideal image case and the RMSE is about 0.101 ± 0.0263λ with the simulated image case. Since the outcome in the simulated image case is poor, we use the transfer learning method to improve the RMSE to about 0.0586 ± 0.0035λ. The prediction technique applies not only to the ideal case but also to the actual interferometer. In addition, the novel prediction technique makes predicting Zernike coefficients more accurate than our previous research.
Journal Article
Highly efficient capture approach for the identification of diverse inherited retinal disorders
2024
Our study presents a 319-gene panel targeting inherited retinal dystrophy (IRD) genes. Through a multi-center retrospective cohort study, we validated the assay’s effectiveness and clinical utility and characterized the mutation spectrum of Taiwanese IRD patients. Between January 2018 and May 2022, 493 patients in 425 unrelated families, all initially suspected of having IRD without prior genetic diagnoses, underwent detailed ophthalmic and physical examinations (with extra-ocular features recorded) and genetic testing with our customized panel. Disease-causing variants were identified by segregation analysis and clinical interpretation, with validation via Sanger sequencing. We achieved a read depth of >200× for 94.2% of the targeted 1.2 Mb region. 68.5% (291/425) of the probands received molecular diagnoses, with 53.9% (229/425) resolved cases. Retinitis pigmentosa (RP) is the most prevalent initial clinical impression (64.2%), and 90.8% of the cohort have the five most prevalent phenotypes (RP, cone-rod syndrome, Usher’s syndrome, Leber’s congenital amaurosis, Bietti crystalline dystrophy). The most commonly mutated genes of probands that received molecular diagnosis are USH2A (13.7% of the cohort), EYS (11.3%), CYP4V2 (4.8%), ABCA4 (4.5%), RPGR (3.4%), and RP1 (3.1%), collectively accounted for 40.8% of diagnoses. We identify 87 unique unreported variants previously not associated with IRD and refine clinical diagnoses for 21 patients (7.22% of positive cases). We developed a customized gene panel and tested it on the largest Taiwanese cohort, showing that it provides excellent coverage for diverse IRD phenotypes.
Journal Article
Sitagliptin protects rat kidneys from acute ischemia- reperfusion injury via upregulation of GLP-1 and GLP-1 receptors
by
Meng-wei CHANG Chih-hung CHEN Yi-ching CHEN Yin-chun WU Yen-yi ZHEN Steve LEU Tzu-hsien TSAI Sheung-fat KO Pei-hsun SUNG Chih-chau YANG Hsin-ju CHIANG Hsueh-wen CHANG Yen-ta CHEN Hon-kan YIP
in
angiogenesis
,
Animals
,
Biomedical and Life Sciences
2015
Aim: Sitagliptin, an oral glucose-lowering agent, has been found to produce cardiovascular protection possibly via anti-inflammatory and anti-atherosclerotic activities of glucagon-like peptide-1 receptor (GLP-1). The aim of this study was to investigate whether sitagliptin protected the kidney function from acute ischemia-reperfusion (IR) injury in rats. Methods: Adult male SD rats were categorized into 4 groups: sham control, IR injury, IR+sitagliptin (300 mg/kg) and IR+sitagliptin (600 mg/kg). Acute renal IR injury of both kidneys was induced by clamping the renal pedicles for I h. The drug was orally administered at 1, 24 and 48 h after acute IR. Blood samples and 24-h urine were collected before and at 72 h after acute IR. Then the rats were sacrificed, and the kidneys were harvested for biochemical and immunohistochemical studies.
Journal Article
Unveiling Fermentation Effects on the Functional Composition of Taiwanese Native Teas
by
Cheng, Kuan-Chen
,
Tsai, Hsien-Tsung
,
Su, Tsung-Chen
in
Altitude
,
Amino acids
,
Amino Acids - analysis
2026
Tea’s chemical composition is influenced by cultivar, harvest maturity, and growing environment; however, processing remains the dominant factor shaping final quality. Despite the diversity of Taiwanese native teas, systematic comparisons of functional components across multiple manufacturing stages remain limited. In this study, nine representative Taiwanese teas were evaluated at four key processing stages—green tea (G), enzymatic fermentation (oxidative fermentation, F), semi-finished tea prior to roasting (S), and completed tea (C)—to clarify how enzymatic oxidation, rolling, and roasting alter major bioactive constituents. Green-tea-stage samples exhibited clear cultivar-dependent profiles: large-leaf cultivars contained higher catechins and gallic acid, whereas bud-rich small-leaf teas showed elevated caffeine and amino acids, with amino acids further enhanced at higher elevations. Fermentation intensity governed the major chemical transitions, including catechin depletion, gallic acid formation, accumulation of early stage catechin-derived paired oxidative polymerization compounds (POPCs), and pronounced increases in theasinensins in heavily fermented teas. L-theanine decreased most markedly in teas subjected to prolonged withering. Roasting further reduced amino acids but had minimal influence on caffeine, while rolling effects varied by tea type. Overall, this study provides the first stage-resolved chemical map of Taiwanese native teas, offering practical insights for optimizing processing strategies to enhance functional phytochemical profiles.
Journal Article